| 研究生: |
蔡佳霖 Tsai, Jia-Lin |
|---|---|
| 論文名稱: |
使用可變電容陣列之LC壓控振盪器的3.4~3.6 GHz非整數型鎖相迴路設計 3.4~3.6 GHz Fractional-N PLL Design With Varactor Array LC VCO |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 可變電容陣列 、三角積分調變器 、非整數型鎖相迴路 |
| 外文關鍵詞: | Varactor array, Delta-Sigma modulator, Fractional-N PLL |
| 相關次數: | 點閱:310 下載:51 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為應用在5G通訊技術裡3.4~3.6 GHz Sub-6G頻段的非整數型鎖相迴路電路設計,主要分為兩大部分:第一部分為壓控振盪器的模擬設計,主要的目的是為了優化鎖相迴路的動態響應,設計出符合鎖相迴路使用的子電路壓控振盪器。為了改善壓控振盪器增益跳動過大造成鎖相迴路不好的動態響應,加入可變電容陣列來重新定義調變容值的範圍,讓其容值變化不那麼劇烈並且更加線性。在模擬設計後,等效容值可調範圍為1.03~1.78 pF。LC壓控振盪器的頻率可調範圍為3.275~3.677 GHz (11.56%),在頻率偏移1 MHz時最好的相位雜訊為-120.58 dBc/Hz。模擬整體壓控振盪器的消耗功率為12.53 mW,輸出功率皆大於-3 dBm。第二部分為3.4~3.6 GHz非整數型鎖相迴路設計與整合,其中子電路包含相位頻率偵測器(PFD)、充電泵(CP)、低通迴路濾波器(LPF)、壓控振盪器(VCO)與除頻器(Divider),其中除頻器又包含前置除頻器(Prescaler)、多模數除頻器(Multi-modulus Divider)與兩級的三角積分調變器(Delta-Sigma Modulator)。在非整數型鎖相迴路的量測上,輸入參考頻率為26.86 MHz,輸出頻率範圍為3.438~3.612 GHz,相位雜訊在頻率偏移1 MHz時最好的為-96.85 dBc/Hz,輸出功率皆大於-7 dBm,整體功率消耗為19.56 mW,晶片面積為1.539 。非整數型鎖相迴路主要的優點是,可以在達到輸出頻率解析度高的同時,頻寬不受參考頻率影響,因此在決定迴路頻寬大小時可以比較彈性,對於雜訊與鎖定時間的設計考量,會有比較充裕的設計選擇。
This thesis proposes a fractional-N phase-locked loop circuit design applied in the 3.4~3.6 GHz Sub-6G frequency band in 5G communication applications. It is mainly divided into two parts. The first part is the design of the voltage-controlled oscillator. The main purpose is to design a sub-circuit voltage-controlled oscillator that is suitable for the phase-locked loop and to prepare the optimization work of the PLL. In order to improve the bad dynamic response of the phase-locked loop caused by the excessive gain jump of the voltage-controlled oscillator, a varactor array is added to redefine the range of the modulation capacitance, so that its vco gain change is not so drastic and become more linear. After the simulation design, the adjustable range of the equivalent capacitance is from 1.03 to 1.78 pF, and the adjustable frequency range of the LC voltage-controlled oscillator is from 3.275 to 3.677 GHz (11.56% ,tuning ratio). The best phase noise is -120.58 dBc/Hz when the frequency offset is 1 MHz from the center frequency of 3.275 GHz. The simulated overall VCO power consumption is 12.53 mW, and the output power is greater than -3 dBm. The second part of this thesis is the integration design of a 3.4~3.6 GHz fractional-N phase-locked loop, in which the sub-circuits of it include a phase frequency detector(PFD), a charge pump(CP), a low-pass loop filter(LPF), a voltage-controlled oscillator(VCO) and a frequency divider(FD). The frequency divider includes a prescaler, a multi-modulus frequency divider and a two-stage Delta-Sigma modulator. In the measurement of this designed fractional-N PLL, the input reference frequency is 26.86 MHz, the output frequency range is from 3.438 to 3.612 GHz. The available phase noise is -96.85 dBc/Hz at 1 MHz offset from center frequency of 3.505 GHz. The output power is greater than -7 dBm. The overall power consumption is 19.56 mW and the chip area is 1.539 . The main advantage of the fractional-N phase-locked loop is that it can achieve high resolution of the output frequency while the bandwidth is not affected by the reference frequency. Therefore, fractional-N PLL can be more flexible when determining the bandwidth of the loop. For the design considerations of noise and lock time, there will be more design choices.
[1] https://myfone.blog/howtochoose/hot-sale-list/5g-sub-6-mmwave-intro/
[2] https://myfone.blog/howtochoose/recommendation/2020-5g-smartphone/
[3] https://www.narlabs.org.tw/xcscience/cont?
xsmsid=0I148638629329404252&sid=0K 279564703065721553
[4] S. Kurachi, T. Yoshimasu, N. Itoh and K. Yonemura, "5-GHz Band Highly Linear VCO IC with a Novel Resonant Circuit,"in 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Long Beach, CA, USA, 2007, pp. 285-288.
[5] F. Gardner, "Charge-Pump Phase-Lock Loops," in IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849-1858, November 1980.
[6] T.-H Lin, Ching-Lung Ti, and Yao-Hong Liu, “Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs,” IEEE Trans. Circuits Syst. I, vol. 56, no. 5, pp. 877–885, May 2009.
[7] T. A. D. Riley, M. A. Copeland and T. A. Kwasniewski, "Delta-sigma modulation in fractional-N frequency synthesis, " IEEE J. Solid-State Circuits, vol. 28, no. 5, pp. 553-559, May 1993.
[8] M. M. Mansour and M. M. Mansour, "On the design of low phase-noise CMOS LC-tank oscillators, " 2008 International Conference on Microelectronics, Sharjah, United Arab Emirates, 2008, pp. 407-412.
[9] X. Deng, X. Lin, Y. Mo and M. Zhu, "Analysis of phase noise in CMOS ring oscillator due to substrate noise, " 2015 IEEE Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, 2015, pp. 1-4.
[10] D. Ham and A. Hajimiri, "Concepts and methods in optimization of integrated LC VCOs, " IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, June 2001.
[11] E. Jimenez-Dominguez, V. R. Gonzalez-Diaz and A. M. Rodriguez-Dominguez, "Behavioral model of a VCO varying its Kvco with Verilog-A, " 2016 13th International Conference on Power Electronics (CIEP), Guanajuato, Mexico, 2016, pp. 70-74.
[12] K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng, "A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors, " IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 654-665, March 1990.
[13] 劉深淵、楊清淵,鎖相迴路(初版),滄海書局,中華民國一百零六年九月。
[14] J. Böcker, "Analysis of the Magnetic Skin Effekt in Motors and Inductors," 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 2020, pp. 103-107.
[15] T. J. Cavicchi, "Multiple reactions in inductors, " in IEEE Transactions on Education, vol. 40, no. 1, pp. 78-88, Feb. 1997.
[16] Y. -J. Chan, C. -F. Huang, C. -C. Wu, C. -H. Chen and C. -P. Chao, "Performance Consideration of MOS and Junction Diodes for Varactor Application, " IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2570-2573, Sept. 2007.
[17] N. H. W. Fong et al., "A 1-V 3.8 - 5.7-GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology, " IEEE Trans. Microw. Theory Techn., vol. 51, no. 8, pp. 1952-1959, Aug. 2003.
[18] P. Andreani and S. Mattisson, “A 2.4-GHz CMOS monolithic VCO based on an MOS varactor, ” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, vol. 2, No.99, pp. 557–560, USA, 1999.
[19] Y. -C. Chiang and Y. -H. Chang, "A back-gate coupling QVCO with Kvco linearization technique, " 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Singapore, 2009, pp. 108-110.
[20] B. Razavi, RF Microelectronics. second edition, Prentice Hall, Inc., 2012.
[21] F. Aflatouni and H. Hashemi, "A 1.8mW Wideband 57dBΩ transimpedance amplifier in 0.13µm CMOS, " 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, 2009, pp. 57-60.
[22] C.Barrett, ‘‘Fractional/Integer-N PLL Basics, ’’TEXAS INSTRUMENTS Technical Brief, SWRA029, 1999.
[23] A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[24] B. Razavi,Design of CMOS Phase-Locked Loop: From Circuit Level to Aechitecture Level, Cambridge University Press,2020.
[25] W. Rhee and A. Ali, “An on-chip phase compensation technique in fractional-N frequency synthesis, ” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI, Orlando, FL, USA, 1999, vol. 3, pp. 363–366.
[26] Ö. Göksu, R. Teodorescu, C. L. Bak, F. Iov and P. C. Kjær, “Instability of Wind Turbine Converters During Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution, ” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1683–1691, Jul. 2014.
[27] Y. Matsuya and Y. Akazawa, “Multi-stage noise shaping technology and its application to precision measurement, ” in Conference Record IEEE Instrumentation and Measurement Technology Conference, Metropolitan, NY, USA, 1992, pp. 540–544.
[28] B. Miller and R. J. Conley, “A multiple modulator fractional divider, ” IEEE Trans. Instrum. Meas., vol. 40, no. 3, pp. 578–583, Jun. 1991.
[29] M. H. Perrott, M. D. Trott and C. G. Sodini, "A modeling approach for Sigma-Delta fractional-N frequency synthesizers allowing straightforward noise analysis, " IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1028-1038, Aug. 2002.
[21] S. A. Osmany, F. Herzel, K. Schmalz, and W. Winkler, "Phase noise and jitter modeling for fractional-N PLLs, " Adv. Radio Sci., 5, 313–320, 2007.
[31] W.-H. Chen, M. E. Inerowicz, and B. Jung, “Phase Frequency Detector With Minimal Blind Zone for Fast Frequency Acquisition, ” IEEE Trans. Circuits Syst. II, vol. 57, no. 12, pp. 936–940, Dec. 2010.
[32] C. Eichenberger and W. Guggenbuhl, "On charge injection in analog MOS switches and dummy switch compensation techniques, " IEEE Trans. Circuits Syst., vol. 37, no. 2, pp. 256-264, Feb. 1990.
[33] K Shu, E Sánchez-Sinencio, CMOS PLL synthesizers: analysis and design, Springer 2005.
[34] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), Orlando, FL, USA, 1999, vol. 2, pp. 545–548.
[35] Bram De Muer and M. S. J. Steyaert, “On the analysis of ΔΣ fractional-n frequency synthesizers for high-spectral purity, ” IEEE Trans. Circuits Syst. II, vol. 50, no. 11, pp. 784–793, Nov. 2003.
[36] M. Fang and T. Yoshimasu, “A −197.3-dBc/Hz FoMT Wideband LC-VCO IC With a Single Voltage-Controlled IMOS-Based Novel Varactor in 40-nm CMOS SOI, ” IEEE Trans. Microwave Theory Techn., vol. 68, no. 10, pp. 4116–4121, Oct. 2020.
[37] S. Das, S. Dandapat and S. Chatterjee, "Design of Low Phase-Noise LC- VCO at 2.5GHz by Body-Bias Technique Using CMOS 180 nm Technology, " 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS), Kolkata, India, 2020, pp. 1-4.
[38] X. Wang, X. Yang, X. Xu, and T. Yoshimasu, “2.4-GHz-band low-voltage LC-VCO IC with simplified noise filtering in 180-nm CMOS, ” in IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, Mar. 2016, pp. 1–3.
[39] Y. Zhang et al., “A 5.8 GHz Implicit Class-F VCO in 180-nm CMOS Technology, ” in IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, Dec. 2019, pp. 1170–1172.
[40] J. Jiang, T. Yan, D. Zhou, A. I. Karsilayan, and J. Silva-Martinez, “A 2.3-3.9 GHz Fractional-N Frequency Synthesizer with Charge Pump and TDC Calibration for Reduced Reference and Fractional Spurs, ” in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, Jun. 2021, pp. 71–74.
[41] G. Jin, F. Feng, X. Gao, W. Chen, Y. Shu and X. Luo, "A 3.3-4.5GHz Fractional-N Sampling PLL with A Merged Constant Slope DTC and Sampling PD in 40nm CMOS, " 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Atlanta, GA, USA, 2021, pp. 63-66.
[42] X. Xu, W. Rhee and Z. Wang, "A Low-Spur Current-Biasing-Free Fractional-N Hybrid PLL for Low-Voltage Clock Generation, " 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-4.
[43] A. Motozawa, Y. Hiraku, Y. Hirai, N. Hiyama, Y. Imanaka and F. Morishita, "An Attachable Fractional Divider Transforming an Integer-N PLL Into a Fractional-N PLL Achieving Only 0.35-psrms-Integrated-Jitter Degradation With SSC Capability, " in IEEE Solid-State Circuits Letters, vol. 6, pp. 69-72, 2023.