| 研究生: |
蔡維哲 Tsai, Wei-Che |
|---|---|
| 論文名稱: |
基於適應性非線性滑模控制之循跡精度改善研究 Study on Contour Following Accuracy Improvement Based on Adaptive Nonlinear Sliding Mode Control |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 循跡運動控制 、適應性控制 、滑動模式控制 、干擾量補償 |
| 外文關鍵詞: | Contour Following Control, Adaptive Control, Sliding Mode Control, Disturbance Compensation, NURBS |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於循跡控制的應用中,如何發展一優良的伺服控制技術,以降低追蹤誤差(Tracking Error)以及輪廓誤差(Contour Error) ,為達成高精密加工、製造的重要關鍵。一般而言,系統與環境造成的非線性現象及外部干擾量,為造成循跡控制精度不佳的主要原因。以常用於CNC工具機之線性伺服馬達為例,非線性現象及舉凡頓動力及摩擦力等外部干擾量,其隨環境變化的特性,常造成鑑別不易或補償不精確。為有效抑制系統外部干擾量的不良影響,本論文提出適應性非線性滑動模式控制器(Adaptive Nonlinear Sliding Mode Control, ADNSMC),利用非均勻有理基底雲形線(Non-Uniform Rational B-Spline, NURBS) 發展一隨環境變化的干擾量線上鑑別補償機制,並藉由非線性滑動面的設計抑制傳統滑模控制的顫動效應且同時保證系統的強健性與穩定性。本論文使用二軸線性伺服馬達運動平台驗證所提方法之可行性,實驗結果顯示本論文所提出之適應性非線性滑動模式控制器以及基於NURBS之頓動力及摩擦力補償機制確實可有效提升循跡精度。
In contour following applications, one of the most crucial factors for achieving high precision machining/manufacturing is the development of an excellent servo control scheme for reducing tracking error and contour error. In general, nonlinearity and disturbance resulting from system itself and ambient environment are two of the major reasons contributing to the deterioration of contour following accuracy. In particular, for permanent magnet linear servomotors commonly used in CNC machine tools, its nonlinearities include friction and cogging force. The fact that these nonlinearities are dependent on the ambient environment of the linear motor often lead to inaccurate system identification and disturbance compensation. In order to effectively suppress the adverse effect due to external disturbance and nonlinearities, this thesis proposes an Adaptive Nonlinear Sliding Mode Control (ADNSMC) scheme. In the proposed control scheme, the Non-Uniform Rational B-Spline (NURBS) is exploited to develop an on-line disturbance estimation/compensation mechanism. Moreover, by designing a nonlinear sliding surface, the proposed control scheme is able to effectively suppress the chattering effect often occurred in the conventional sliding mode control approach. Theoretical analysis of stability and robustness are also provided in this thesis. A 2DOF motion stage actuated by two permanent magnet linear servomotors is used as an experimental platform to assess the performance of the proposed control approach. Experimental results indicate that the proposed ADNSMC indeed is effective in friction and cogging force compensation so as to improve contour following accuracy.
參考文獻
[1] 台灣機械工業同業公會,“2015年1~9月台灣機械出口機種別統計分析表”,2015.
[2] L. Piegl, “On NURBS:a survey,” IEEE Computer Graphics and Applications, vol. 11, pp. 51-71, Jan. 1991.
[3] V. I. Utkin, “Sliding Mode Control Design Principles and Applications to Electric Drives,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, Feb. 1993.
[4] V. I. Utkin, “Survey paper variable structure systems with sliding modes,” IEEE Trans. Automat. Control, vol. 22, no. 2, pp. 212-222, Apr. 1977.
[5] X. Yu and O. Kaynak, “Sliding-Mode Control with Soft Computing: A Survey,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3275-3285, Jul. 2009.
[6] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant “Guidance and Control of Missile Interceptor using Second-Order Sliding Modes,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 1, pp. 110-124, Jul. 2009.
[7] A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control, vol. 58, no. 6, pp. 1247-1263, Aug. 1991.
[8] J. Davila, L. Fridman, and A. Levant, “Second-order sliding-mode observer for mechanical systems,” IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1785-1789, Nov. 2005.
[9] I. Eker, “Second-order sliding mode control with experimental application,” ISA Trans., vol. 49, no. 3, pp. 394-405, Jul. 2010.
[10] J. A. Burton and A. S. I. Zinober, “Continuous approximation of variable structure control,” Int. J. Syst. Sci., vol. 17, no. 6, pp. 875–885, 1986.
[11] J. J. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator,” Int. J. Control, vol. 38, no. 2, pp. 931-938, Dec. 1983.
[12] M. L. Tseng and M. S. Chen, “Chattering Reduction of Sliding Mode Control by Low-pass Filtering The Control Signal,” Asian J. Control, vol. 12, no. 3, pp. 392-398, May. 2010.
[13] S. Y. Wang, C. M. Hong, C.C. Liu and W. T. Yang, “Design of a static reactive power compensator using fuzzy sliding mode control,” Int. J. Control, vol. 63, no. 2, pp. 393-413, 1996.
[14] Q.P. Ha, Q.H. Nguyen, D.C. Rye, H.F. Durrant-Whyte, “Fuzzy Sliding-Mode Controllers with Applications,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 38-46, Feb. 2001.
[15] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, 1993.
[16] 楊憲東,非線性控制,上課教材,國立成功大學航空太空研究所,2011 九月。
[17] S. Yu, X. Yu, B. Shirinzadeh, Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automat., vol. 41, no. 11, pp. 1957-1964, Nov. 2005.
[18] L. X. Wang, “Fuzzy Control of Nonlinear Sysems Ⅰ: Sliding Control,” in A Course in Fuzzy Systems and Control, 4th ed. Taipei, R.O.C.: Prentice-Hall, 2010, ch.19, pp. 238-247.
[19] R. Palm, “Sliding Mode Fuzzy Control,” in IEEE Int. Conf. Fuzzy Syst., San Diego, CA, 1992, pp. 519-526.
[20] Z. Man and X. Yu, “Terminal sliding mode control of MIMO systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl, vol. 44, no. 11, pp. 1065–1070, Nov. 1997.
[21] K. Abidi, J.-X. Xu, and J.-H. She, “A discrete-time terminal sliding-mode control approach applied to a motion control problem,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3619–3627, Sep. 2009.
[22] Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, Dec. 2002.
[23] J. Zheng, H. Wang, Z. Man, J. Jin and M. Fu, “Robust Motion Control of a Linear Motor Positioner Using Fast Nonsingular Terminal Sliding Mode,” IEEE/ASME Trans. on Mechatronics, vol. 20, no. 4, Aug. 2015.
[24] C. C. D. Wit, H. Olsson, K. J. Astrom and P. Lischinsky, “A New Model for Control of Systems with Friction,” IEEE Trans. on Autm. Control, vol.40, no. 3, pp. 419-425, Mar. 1995.
[25] D.Haessig and B. Friedland, “On the Modeling and Simulation of Friction,” ASME J. Dyn. Sys., Meas., Control, pp. 113, 1991
[26] A. Helouvry, B. P. Dupont and C. C. D. Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automat, vol. 30, no. 7, pp. 1083-1138, 1994.
[27] Y. Tan and I. Kanellakopoulos, “Adaptive Nonlinear Friction Compensation with Parametric Uncertainties,” American Control Conf., San Diego, CA, 1999.
[28] L. Xu and B. Yao, “Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation,” American Control Conf., Chicago, IL, 2000.
[29] C. T. Johnson and R. D. Lorenz, “Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms,” IEEE Trans. on Ind. Applicat., vol. 28, no. 6, pp. 1392-1398, Nov/Dec 1992.
[30] 台灣機械工業同業公會,線型馬達驅動工具機的技術發展與應用,機械資訊,568期,2004。
[31] R. Schmulian, “Reduction of Cogging Forces in a Double Sided Tubular Linear Permanent Magnet Generator Used for Ocean Wave Energy Conversion,” M.S. thesis, Dept. Science Eng., Witwatersrand Univ., Johannesburg, South African, 2012.
[32] S. M. Hwang, J. B. Eom, Y. H. Jung, D. W. Lee and B. S. Kang, Various Design Techniques to Reduce Cogging Torque by Controlling Energy Variation in Permanent Magnet Motors,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2806-2809, Jul. 2001.
[33] C. Studer and T. Sebastian, “Study of Cogging Torque in Permanent Magnet Machines,” in IEEE IAS Annual Metting, New Orleans, Louisiana, USA, Oct. 1997.
[34] N. Bianchi and S. Bolognani, “Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors,” IEEE Trans. on Industry Appl., vol. 38, no. 5, Oct. 2002.
[35] Z. Q. Zhu, Z. P. Xia, D. Howe and P. H. Mellor, “Reduction of cogging force in slotless linear permanent magnet motors,” IEE Proc. Elect. Power Applicat., vol. 144, no. 4, pp. 277-282, Jul 1997.
[36] 張宇承,具適應性滑動模式干擾量補償架構之循跡精度改善,碩士論文,國立成功大學電機工程學系,2012。
[37] B. Yao, C. Hu, L. Lu amd Q. Wang, “Adaptive Robust Precision Motion Control of a High-Speed Industrial Gantry with Cogging Force Compensations,” IEEE Trans. Control Syst. Technol., vol. 19, no. 5, pp. 1149-1159, Aug. 2011.
[38] L. Lu, Z. Chen, B. Yao and Q. Wang, “Desired Compensation Adaptive Robust Control of a Linear-Motor-Driven Precision Industrial Gantry with Improved Cogging Force Compensation,” IEEE/ASME Trans. on Mechatronics, vol. 13, no. 6, pp. 617-624, Dec. 2008.
[39] 顏木田、賴逸鵬及張良舜,“線性馬達驅動之線切割放電加工機研究(2/2)”,行政院國家科學委員會,台北,台灣,計畫編號:NSC94-2212-E-211-001,2006。
[40] 楊政瑜及蘇琨祥,無刷電動機結構設計與特性研究,工程科技與教育期刊,第五卷,第三期,pp. 425-445,2008年九月。
[41] L. Piegl and W. Tiller, The NURBS Book, 2nd ed. New York: Springer, 1997.
[42] M. Y. Cheng, M. C. Tsai, and J.C. Kuo, “Real-time NURBS Command Generators for CNC Servo Controllers,” International Journal of Machine Tools and Manufacture, Vol. 42, No.7, 2002, pp. 801-813.
[43] M. C. Tsai, M. Y. Cheng, K. F. Lin and N. C. Tsai, “On acceleration/ deceleration before interpolation for CNC motion control,” in Proc. IEEE Int. Conf. on Mechatronics, Taipei, Taiwan, 2005, pp. 382-387.
[44] S. H. Suh, S. K. Kang, D. H. Chung, and I. Stroud, “Acceleration and Deceleration,” in Theory and Design of CNC Systems, London, UK: Springer, 2008, ch. 4, pp. 107-156.
[45] 鄭銘揚,Itroduction to Motion Control System課程講義,2015。
[46] 劉叡明,伺服馬達低轉速控制改善之研究,碩士論文,國立成功大學電機工程學系,2008。
[47] F. C. Lin and S. M. Yang, “Adaptive Fuzzy Logic-based Velocity Observer for Servo Motor Drives,” Mechatronics, vol. 13, no. 3, pp. 229-241, Apr. 2003.
[48] B. Sencer, Y. Altintas, and E. Croft, “Modeling and Control of Contouring Errors for Five-Axis Machine Tools─PartⅠ: Modeling,” J. Manuf. Sci. Eng., vol. 131, no. 3, pp. 1-8, Jun. 2009.
[49] B. Sencer, Y. Altintas, and E. Croft, “Modeling and Control of Contouring Errors for Five-Axis Machine Tools─PartⅡ: Precision Contour Controller Design,” J. Manuf. Sci. Eng., vol. 131, no. 3, pp. 1-10, Jun. 2009.
[50] 工研院,IMP-2硬體使用手冊,2010。
[51] G. Otten, T.Vries, J.Amerongen, A. Rankers and E. Gaal “Linear motor motion control using a learning feedforward controller,” IEEE/ASME Trans. Mechatronics, vol. 2, no. 3, pp. 179-189, Sep. 1997.
[52] Z. Lin, D. S. Reay, B.W.Williams, and X. He, “Torque ripple reduction in switched reluctance motor drives using B-spline neural networks,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1445–1453, Nov./Dec. 2006.
[53] 林銘湧,精密伺服控制系統之摩擦力分析及補償研究,碩士論文,逢甲大學自動控制工程學系碩士班,2000。
[54] J. J. E. Slotine and W. Li, “Applied Nonlinear Control,” Prentice Hall, 1991.
[55] G. Tao, “Adaptive Control Design and Analysis,” Wiley-IEEE Press, 2003
[56] W. D. Chang, R. C. Hwang and J. G. Hsieh, “A self-tuning PID control for a class of nonlinear system based on the Lyapunov approach,” J. Process Contr., vol. 12, pp. 233-242, 2002.
校內:2022-07-31公開