簡易檢索 / 詳目顯示

研究生: 陳靜慧
Chen, Ching-Hui
論文名稱: 內置十字與X型肋狀條管紊流熱性能提升實驗研究
An Experimental Study of Aerothermal Performance Improvement for Turbulent Duct Flow Using Cross and X Ribbed Stripe Inserts
指導教授: 張始偉
Chang, Shyy-Woei
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 60
中文關鍵詞: 肋化縱向插條肋條紊流器嵌入技術
外文關鍵詞: Heat Transfer Enhancement, Heat exchangers, Inserts
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱交換器節能廣泛使用嵌入式熱傳強化裝置來提升管流之熱傳強化效果,進而提高熱性能係數。為強化嵌入物的結構強度,本研究發明肋化十字與X型縱向嵌入物,其中嵌入物的表面帶有90°或45°五種節距的肋條以及在邊緣處設計成開槽和沒開槽的形式。量測之紐賽數、摩擦係數和熱性能係數的雷諾數範圍定在5000-2,5000。流體模擬結果顯示了管道內置肋狀條可以改善熱性能。與具有複雜幾何形狀的扭旋片、線圈和百葉窗嵌入物相比,肋狀條導引出的多渦流結構可以提升紊流強度和增進流體混合,以至於協同角減少,進而提高熱傳效果。十字或X型肋狀條之紐賽數(摩擦係數)分別提高到Dittus-Boelter (Blasius)公式值的1.38-3.17 (4.22-21.75)倍或1.43-3.39 (8.53-43.41)倍。邊緣開槽減少壓降,進一步提升熱性能係數。節距比為10的+45-N肋狀條具有最高的熱性能係數,其範圍在1.47-1.11間,並隨雷諾數的增加而降低。考慮工業應用需求,利用本研究產生之數據庫回歸經驗公式,可供設計人員計算管道內置十字或X型肋狀條之平均紐賽數和凡寧摩擦係數。

    Currently, inserts are widely used to improve the heat transfer efficiency of the ducted flow in heat exchangers. Integration of Nusselt number and friction coefficient into aerothermal performance index (API) for comparison of thermal performance of different inserts is commonly adopted in this technical community. Since common inserts such as coiled, twisted, vortex/swirl generator and louvered stripe have complex geometries, we have designed cross and X-shaped ribbed inserts to simplify the shape and increase the structural rigidity of the duct. The surface of the insert with and without edge notches is roughened by the 90° or 45° ribs with five rib-pitches. The Nusselt numbers, friction factors, and APIs of the enhanced ducts with the various types of cross and X-shaped ribbed inserts are measured at Reynolds numbers in the range of 5000-2,5000. Flow simulations show that the ribbed stripe insert trips multi-cellar vortices, which increase turbulence kinetic energy and improve the fluid mixings, leading to heat transfer enhancement. The experimental results show that the Nusselt numbers (friction factor) with the cross or X-ribbed stripes are increased to 1.38-3.17 (4.22-21.75) and 1.43-3.39 (8.53-43.41) times the values of the Dittus-Boelter (Blasius) formula levels, respectively. The presence of edge notches reduces pressure drops across the enchanted ducts. This further improves the aerothermal performance with the cross and X ribbed stripes. Among all the inserts, the +45-N stripe with a rib pitch-to-height ratio of 10 shows the highest API in the range of 1.47-1.11. To assist industrial applications, the empirical correlations calculating the average Nusselt number and the Fanning friction coefficient for ducts with the cross or X-ribbed stripes are devised.

    摘要2 Extended Abstract3 誌謝16 目錄17 表目錄18 圖目錄19 符號表23 第一章 前言25 第二章 研究方法 27 2.1實驗方法27 2.2數值方法30 第三章 結果與討論32 第四章 結論55 參考文獻56

    [1] R.M. Manglik and A. E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—transition and turbulent flows, ASME J. Heat Transfer, 115 (1993) 890-896.
    [2] M.-R.M. Drizius, R.K. Shkema, A.A. Shlanciauskas, Heat transfer in a twisted stream of water in a tube, Int. Chemical Engineering, 20 (1980) 486-489.
    [3] S.W. Chang, Y.J. Jan, and L.M. Su, Heat transfer in an axially rotating tube fitted with twin twisted tapes, JSME Int. J. B. Fluids and Thermal Engineering, 47 (2004) 637-646.
    [4] S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard, Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes, Experimental Thermal and Fluid Science 34 (2010) 53-62.
    [5] M.M.K. Bhuiya, A.S.M. Sayem, M. Islam, M.S.U. Chowdhury, M. Shahabuddin, Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts, International Communications in Heat and Mass Transfer, 50 (2014) 25-33.
    [6] S. Eiamsa-ard, W., Changcharoen, R. Beigzadeh, P. Eiamsa-ard, K. Wongcharee, V, Chuwattanakul, Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification, Chemical Engineering and Processing - Process Intensification, 160 (2021) 108304.
    [7] S.W. Chang, Y.J. Jan, J.S. Liou, Turbulent heat transfer and pressure drop in tube fitted with serrated twisted-tape, International Journal of Thermal Sciences, 46 (2007) 506-518.
    [8] S. Eiamsa-ard, K. Wongcharee, P. Eiamsa-ard, C. Thianpong, Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes, Experimental Thermal and Fluid Science, 34 (2010) 1151-1161.
    [9] S.K. Saha, Thermohydraulics of laminar flow of viscous oil through a circular tube having axial corrugations and fitted with centre-cleared twisted-tape, Experimental Thermal and Fluid Science, 38 (2012) 201-209.
    [10] J. Guo, A. Fan, X. Zhang, W. Liu, A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape, International Journal of Thermal Sciences, 50 (2011) 1263-1270.
    [11] S.W. Chang, Bo-Jyun Huang, Thermal performances of tubular flows enhanced by ribbed spiky twist tapes with and without edge notches, Int. J. Heat Mass Transfer, 73 (2014) 645-663.
    [12] P. Murugesan, K. Mayilsamy, S. Suresh, P.S.S. Srinivasan, Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert, International Communications in Heat and Mass Transfer, 38 (2011) 329-334.
    [13] K. Nanan, C. Thianpong, P. Promvonge, S. Eiamsa-ard, Investigation of heat transfer enhancement by perforated helical twisted-tapes, International Communications in Heat and Mass Transfer, 52 (2014) 106-112.
    [14] N. Piriyarungrod, S. Eiamsa-ard, C. Thianpong, M. Pimsarn, K. Nanan, Heat transfer enhancement by tapered twisted tape inserts, Chemical Engineering and Processing: Process Intensification 96 (2015) 62-71.
    [15] M.M.K. Bhuiya, M.S.U. Chowdhury, M. Saha, M.T. Islam, Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts, International Communications in Heat and Mass Transfer, 46 (2013) 49-57.
    [16] T. Dagdevir and V. Ozceyhan, An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts, International Journal of Thermal Sciences, 159 (2021) 106564.
    [17] S. Eiamsa-ard, P. Promvonge, Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts, International Journal of Heat and Mass Transfer, 53 (2010), 1364-1372.
    [18] X.W. Zhu, Y.H. Fu, J.Q. Zhao, A novel wavy-tape insert configuration for pipe heat transfer augmentation, Energy Conversion and Management, 127 (2016) 140-148.
    [19] S. Gururatana and S. Skullong, Heat transfer augmentation in a pipe with 3D printed wavy insert, Case Studies in Thermal Engineering, 21 (2020) 100698.
    [20] S. Skullong, P. Promvonge, N. Jayranaiwachira, C. Thianpong, Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts, Chemical Engineering and Processing - Process Intensification, 109 (2016) 164-177.
    [21] M. Khoshvaght-Aliabadi, O. Sartipzadeh, A. Alizadeh, An experimental study on vortex-generator insert with different arrangements of delta-winglets, Energy, 82 (2015) 629-639.
    [22] G. Liang, M.D. Islam, N. Kharoua, R. Simmons, Numerical study of heat transfer and flow behavior in a circular tube fitted with varying arrays of winglet vortex generators, International Journal of Thermal Sciences, 134 (2018) 54-65.
    [23] S.W. Chang, W.L. Cai, R.S. Syu, Heat transfer and pressure drop measurements for tubes fitted with twin and four twisted fins on rod, Experimental Thermal and Fluid Science, 74 (2016) 220-234.
    [24] A. García, P.G. Vicente, A. Viedma, Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers, International Journal of Heat and Mass Transfer, 48 (2005) 4640-4651.
    [25] C. Zhang, D. Wang, Y. Zhu, Y. Han, J. Wu, X. Peng, Numerical study on heat transfer and flow characteristics of a tube fitted with double spiral spring, International Journal of Thermal Sciences, 94 (2015) 18-27.
    [26] S.W. Chang, J.Y. Gao, H.L. Shih, Thermal performances of turbulent tubular flows enhanced by ribbed and notchd wire coils, International Journal of Heat and Mass Transfer, 90 (2015) 1109-1124.
    [27] S.W. Chang and K.-C. Yu, Heat transfer enhancement by spirally coiled spring inserts with and without segmental solid cords, Experimental Thermal and Fluid Science, 97 (2018) 119-132.
    [28] Y. Hong, J. Du, S. Wang, W.-B. Ye, S.-M. Huang, Turbulent thermal-hydraulic and thermodynamic characteristics in a traverse corrugated tube fitted with twin and triple wire coils, International Journal of Heat and Mass Transfer, 130 (2019) 483-495.
    [29] T. Chompookham, W. Chingtuaythong, S. Chokphoemphun, Influence of a novel serrated wire coil insert on thermal characteristics and air flow behavior in a tubular heat exchanger, International Journal of Thermal Sciences, 171 (2022) 107184.
    [30] K. Nanan, M. Pimsarn, W. Jedsadaratanachai, S. Eiamsa-ard, Heat transfer augmentation through the use of wire-rod bundles under constant wall heat flux condition, International Communications in Heat and Mass Transfer, 48 (2013) 133-140.
    [31] Smith Eiamsa-ard, Somsak Pethkool, Chinaruk Thianpong, Pongjet Promvonge, Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts, International Communications in Heat and Mass Transfer, 35 (2008) 120-129.
    [32] M.E. Nakhchi, J.A. Esfahani, K.C. Kim, Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts, International Journal of Heat and Mass Transfer, 148 (2020) 119143.
    [33] A.T. Wijayanta, B. Kristiawan, Pranowo, A. Premono, M. Aziz, Computational fluid dynamics analysis of an enhanced tube with backward louvered strip insert, Energies, 12 (2019) 3370.
    [34] S.W. Chang, P.S. Wu, W.L. Cai, C.H. Yu, Experimental heat transfer and flow simulations of rectangular channel with twisted-tape pin-fin array, International Journal of Heat and Mass Transfer, 166 (2021) 120809.
    [35] S.J. Kline, F.A. McClintock, Describing uncertainties in single sample experiments, Mech. Eng. 75 (1953) 3-8.
    [36] S.W. Chang, P.-S. Wu, Y.-E. Lu, C.-A. Chen, Aerothermal performances improvement by novel stepped zebra-ribs in two-pass channel, Int. Communications in Heat and Mass Transfer, 142 (2023) 106632.
    [37] Z.Y. Guo, D.Y. Li, B.X. Wang, A novel concept for convective heat transfer enhancement, Int. J. Heat Mass Transfer 41 (1998) 2221–2225.
    [38] X. Zhao, J. E, Z. Zhang, J. Chen, G. Liao, F. Zhang, E. Leng, D. Hana, W. Hua, A review on heat enhancement in thermal energy conversion and management using Field Synergy Principle, Applied Energy 257 (2020) 113995.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE