簡易檢索 / 詳目顯示

研究生: 張簡揚杰
Chang Chien, Yang-Chieh
論文名稱: 多階層功率因數修正器之柔性切換研究
Study on Soft-Switching for Multilevel Power Factor Corrector
指導教授: 李嘉猷
Lee, Jia-You
李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 137
中文關鍵詞: 柔性切換多階層功率因數修正器零電壓導通
外文關鍵詞: soft-switching, multilevel power factor corrector, zero voltage switching
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究具柔性切換之多階層功率因數修正器,藉由使用寬能隙半導體元件,使整體電路操作於高切換頻率,考量寬能隙開關元件耐壓普遍較低,因此透過多階層架構減少各開關元件之電壓應力,使該架構具有能應用於高壓、高切換頻率之特性。隨著切換頻率提升,更需重視電路上開關元件造成之損耗,因此透過加上輔助電路,達到主開關之零電壓導通,並分別進行原硬切換多階層功率因數修正器以及柔性切換版本之模式分析以及損耗討論,並針對電路元件參數以及控制迴路補償器之設計。最後透過模擬軟體,對該電路架構進行開迴路模擬,確認其於各輸入電壓範圍之零電壓導通之可行性,再將設計之補償器參數應用於該架構之回授控制,驗證可於300 kHz切換頻率下達到零電壓切換效果外,也確認輸出電壓可穩定於±400 V、功率因數為0.99,且於滿載3 kW時效率可達到98.02%等設計規格。

    In this thesis, the multilevel power factor corrector (PFC) with soft-switching operation is developed. By employing wide bandgap semiconductor devices, the overall circuit operates at high switching frequency. Given that wide bandgap switches generally have lower voltage ratings, a multilevel architecture is utilized to reduce the voltage stress on each switch, making the architecture suitable for high-voltage, high-frequency applications. As the switching frequency increases, the losses caused by switching devices in the circuit become more significant. Therefore, an auxiliary circuit is incorporated to achieve zero-voltage switching (ZVS) for the main switches. The paper conducts mode analysis and loss discussion for both the original hard-switching multilevel power factor corrector and its soft-switching version. It also addresses the design of circuit component parameters and control loop compensators. Finally, open-loop simulations confirmed the feasibility of zero-voltage switching across various input voltages. Applying the designed compensator parameters in feedback control, the simulations verified that at a switching frequency of 300 kHz, the circuit achieved zero-voltage switching, stabilized the output voltage at ±400 V, maintained a power factor of 0.99, and reached 98.02% efficiency at a full-load of 3 kW.

    中文摘要 I 英文摘要 II 英文延伸摘要 III 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究背景 2 1-3 研究方法 7 1-4 論文大綱 8 第二章 功率因數修正器柔性切換輔助電路架構分析 9 2-1 前言 9 2-2 用於柔性切換之輔助電路架構分析 9 2-3 輔助電路架構選擇 13 第三章 具柔性切換之多階層功率因數修正器模式分析與損耗分析 15 3-1 前言 15 3-2 硬切換多階層功率因數修正器動作分析 16 3-3 具柔性切換多階層功率因數修正器模式分析 25 3-4 多階層功率因數修正器損耗分析 69 3-5 柔性切換多階層功率因數修正器控制架構 77 第四章 硬體電路參數設計 81 4-1 多階層功率因數修正器電路設計 81 4-2 輔助電路參數設計 86 4-3 控制器設計 87 第五章 電路模擬 93 5-1 具柔性切換多階層功率因數修正器開迴路模擬電路與模擬結果分析 93 5-2 具柔性切換多階層功率因數修正器閉迴路模擬電路與模擬結果分析 99 第六章 結論與未來研究方向 106 6-1 結論 106 6-2 未來研究方向 107 參考文獻 108

    [1] Torkan and M. Ehsani, "A novel nonisolated Z-source DC–DC converter for photovoltaic applications," IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4574-4583, Sept.-Oct. 2018.
    [2] S. -M. Chen, T. -J. Liang, L. -S. Yang, and J. -F. Chen, "A safety enhanced, high step-up DC–DC converter for AC photovoltaic module application," IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1809-1817, April 2012.
    [3] V. Rathore, S. R. P. Reddy, and K. Rajashekara, "An isolated multilevel DC–DC converter topology with hybrid resonant switching for EV fast charging application," IEEE Trans. Ind. Appl., vol. 58, no. 5, pp. 5546-5557, Sept.-Oct. 2022.
    [4] B. Whitaker et al., "A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices," IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2014.
    [5] Y. -C. Chu et al., "On-chip AC–DC multiple-power-supplies module for transcutaneously powered wearable medical devices," IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1724-1736, March-April 2018.
    [6] Z. Yan, L. Liu, C. Chen, H. Liu, W. Zhou and R. Mai, "Optimized design of integrated planar matrix transformer for LLC converter in consumer electronics," IEEE J. Emerging Sel. Top. Power Electron., vol. 10, no. 2, pp. 2254-2264, April 2022.
    [7] L. Jia, S. Lakshmikanthan, X. Li and Y. -F. Liu, "New modeling method and design optimization for a soft-switched DC–DC converter," IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5754-5772, July 2018.
    [8] Power Factor Correction Handbook, ON Semiconductor, Phoenix, AZ, Sep. 2007.
    [9] Electromagnetic Compatibility (EMC), Part 3-2: Limits–Limits for Harmonic Current Emissions (Equipment Input Current≤ 16 A Per Phase), International Standard IEC 61000-3-2, 2005, 2013.
    [10] L. Huang, F. Chen, W. Yao and Z. Lu, "Flexible mode bridgeless boost PFC rectifier with high efficiency over a wide range of input voltage," IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3513-3524, May 2017.
    [11] D. J. Perreault et al., "Opportunities and challenges in very high frequency power conversion," in Proc. IEEE 24th Annu. Appl. Power Electron. Conf. Expo., 2009, pp. 1–14.
    [12] M. Araghchini et al., "A technology overview of the PowerChip development program," IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4182-4201, Sept. 2013.
    [13] J. M. Rivas, R. S. Wahby, J. S. Shafran and D. J. Perreault, "New architectures for radio-frequency DC–DC power conversion," IEEE Trans. Power Electron., vol. 21, no. 2, pp. 380-393, March 2006.
    [14] Y. Li and X. Ruan, "Output current limitation for ON–OFF controlled very-high-frequency Class E DC–DC converter," IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11826-11831, Nov. 2022.
    [15] R. Redl, L. Balogh, and N. O. Sokal, “A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage,” in Proc. IEEE Power Electron. Spec. Conf., 1994, pp. 1137–1144.
    [16] Y. Jiang, F. C. Lee, G. Hua, and W. Tang, “A novel single-phase power factor correction scheme,” in Proc. 8th Annu. Appl. Power Electron. Conf. Expo., 1993, pp. 287–292.
    [17] R. B. Pallapati and R. Chinthamalla, "Reduced power processing LED driver with constant output current," IEEE J. Emerging Sel. Top. Power Electron., vol. 11, no. 3, pp. 3291-3301, June 2023.
    [18] J. C. Salmon, "Circuit topologies for single-phase voltage-doubler boost rectifiers," IEEE Trans. Power Electron., vol. 8, no. 4, pp. 521-529, Oct. 1993.
    [19] D. Tollik and A. Pietkiewicz, “Comparative analysis of 1-phase active power factor correction topologies,” in Proc. Int. Telecommunication Energy Conf., 1992, pp. 517–523.
    [20] P. N. Enjeti and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” in Proc. IEEE Applied Power Electronics Conf., 1993, pp. 190–195.
    [21] A. Ferrari de Souza and I. Barbi, "A new ZVS semiresonant high power factor rectifier with reduced conduction losses," IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 82-90, Feb. 1999.
    [22] Chien-Ming Wang, "A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses," IEEE Trans. Ind. Electron, vol. 52, no. 2, pp. 427-435, April 2005.
    [23] Jee-Woo Lim and Bong-Hwan Kwon, "A power-factor controller for single-phase PWM rectifiers," IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 1035-1037, Oct. 1999.
    [24] B. Lu, R. Brown and M. Soldano, "Bridgeless PFC implementation using one cycle control technique," in Proc. 20th Annu. IEEE Appl. Power Electron. Conf. Expo., 2005, vol. 2, pp. 812–817.
    [25] L. Huber, Y. Jang and M. M. Jovanovic, "Performance evaluation of bridgeless PFC boost rectifiers," IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
    [26] Y. Jang and M. M. Jovanovic, "A bridgeless PFC boost rectifier with optimized magnetic utilization," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 85-93, Jan. 2009.
    [27] W. -Y. Choi, J. -M. Kwon, E. -H. Kim, J. -J. Lee and B. -H. Kwon, " Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems," IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 769-780, April 2007.
    [28] H. Ye, Z. Yang, J. Dai, C. Yan, X. Xin, and J. Ying, “Common mode noise modeling and analysis of dual boost PFC circuit,” in Proc. Int. Telecommunication Energy Conf., 2004, pp. 575–582.
    [29] P. Kong, S. Wang and F. C. Lee, "Common mode EMI noise suppression in bridgeless boost PFC converter," in Proc. 20nd IEEE Appl. Power Electron. Conf., 2007, pp. 929-935.
    [30] S. Bernet, "Recent developments of high power converters for industry and traction applications," IEEE Trans. Power Electron. , vol. 15, no. 6, pp. 1102-1117, Nov. 2000.
    [31] H. Yilmaz, K. Owyang, M. F. Chang, J. L. Benjamin and W. R. Van Dell, "Recent advances in insulated gate bipolar transistor technology," IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 831-834, Sept.-Oct. 1990.
    [32] K. Thiyagarajah, V. T. Ranganathan and B. S. R. Iyengar, "A high switching frequency IGBT PWM rectifier/inverter system for AC motor drives operating from single phase supply," IEEE Trans. Power Electron., vol. 6, no. 4, pp. 576-584, Oct. 1991.
    [33] A. Petterteig, J. Lode, and T. M. Undeland, “IGBT turn-off losses for hard switching and with capacitive snubbers,” in Proc. IEEE Industry Applications Society Annu. Meeting, vol. 2, 1991, pp. 1501–1507.
    [34] N. G. Hingorani, "Introducing custom power," IEEE Spectr., vol. 32, no. 6, pp. 41-48, June 1995.
    [35] T. W. Ching, K. T. Chau, and C. C. Chan, “A novel zero-voltage soft-switching converter for switched reluctance motor drives,” in Proc. 24th Annu. IEEE Industrial Electronics Society Conf., vol. 2, 1998, pp. 899–904.
    [36] L. Gyugyi, “Power electronics in electric utilities: static var compensators,” in Proc. IEEE, vol. 76, 1988, pp. 483–494.
    [37] L. Lorenz, G. Deboy, A. Knapp, and M. Marz, “COOLMOS/sup TM/-a new milestone in high voltage power MOS,” in Proc. 11th Int. Symp. Power Semiconductor Devices and ICs, 1999, pp. 3–10.
    [38] A. Elasser and T. P. Chow, "Silicon carbide benefits and advantages for power electronics circuits and systems," Proc. IEEE, vol. 90, no. 6, pp. 969-986, June 2002.
    [39] C. M. Johnson, N. G. Wright, S. Ortolland, D. Morrison, K. Adachi, and A. O. O’Neill, “Silicon carbide power devices: Hopeful or hopeless?,” in Proc. IEE Colloq. Recent Advances in Power Devices, 1999, pp. 10/1–10/5.
    [40] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás and J. Rebollo, "A survey of wide bandgap power semiconductor devices," IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155-2163, May 2014.
    [41] M. Mahrokh, H. Yu and Y. Guo, "Thermal modeling of GaN HEMT devices with diamond heat-spreader," IEEE J. Electron Devices Soc., vol. 8, pp. 986-991, 2020.
    [42] H. Gao and P. Liu, "High-temperature encapsulation materials for power modules: Technology and future development trends," IEEE Trans. Compon. Packag. Manuf. Technol., vol. 12, no. 11, pp. 1867-1881, Nov. 2022.
    [43] L. Han, L. Liang, Y. Kang and Y. Qiu, "A review of SiC IGBT: Models, fabrications, characteristics, and applications," IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2080-2093, Feb. 2021.
    [44] F. F. Wang and B. Liu, "Editorial for the special issue on applications of wide bandgap devices," CPSS Trans. Power Electron. Appl., vol. 3, no. 4, pp. 267-268, Dec. 2018.
    [45] D. Han and B. Sarlioglu, "Deadtime effect on GaN-based synchronous boost converter and analytical model for optimal deadtime selection," IEEE Trans. Power Electron., vol. 31, no. 1, pp. 601-612, Jan. 2016.
    [46] H. Shi, H. Wen and Y. Hu, "Deadband effect and accurate ZVS boundaries of GaN-based dual-active-bridge converters with multiple-phase-shift control," IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9886-9903, Sept. 2020.
    [47] Q. Song, R. Zhang, Q. Li and Y. Zhang, "Origin of soft-switching output capacitance loss in cascode GaN HEMTs at high frequencies," IEEE Trans. Power Electron., vol. 38, no. 11, pp. 13561-13566, Nov. 2023.
    [48] Z. Liu, B. Li, F. C. Lee and Q. Li, "High-efficiency high-density critical mode rectifier/inverter for WBG-device-based on-board charger," IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9114-9123, Nov. 2017.
    [49] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei and M. Mu, "Application of GaN devices for 1 kW server power supply with integrated magnetics," CPSS Trans. Power Electron. Appl., vol. 1, no. 1, pp. 3-12, Dec. 2016.
    [50] L. Zhou, Y. Wu, J. Honea, and Z. Wang, “High-efficiency true bridgeless totem pole PFC based on GaN HEMT: Design challenges and costeffective solution,” in Proc. PCIM Europe, 2015, pp. 1–8.
    [51] Z. Liu, F. C. Lee, Q. Li and Y. Yang, "Design of GaN-based MHz totem-pole PFC rectifier," IEEE J. Emerging Sel. Top. Power Electron., vol. 4, no. 3, pp. 799-807, Sept. 2016.
    [52] Q. Huang and A. Q. Huang, "Review of GaN totem-pole bridgeless PFC," CPSS Trans. Power Electron. Appl., vol. 2, no. 3, pp. 187-196, Sept. 2017.
    [53] N. Ishraq and A. Mallik, "Design of a 2.5 kW four-level interleaved flying capacitor multilevel totem-pole PFC converter with AC-side passive volume optimization," IEEE Open J. Power Electron., vol. 5, pp. 214-231, 2024.
    [54] Y. Xu, J. Wang, K. Xiong and G. Yin, "A novel 5-level flying capacitor bridgeless PFC converter based on cost-effective low-voltage eGaN FETs," Chin. J. Electr. Eng., vol. 6, no. 3, pp. 56-64, Sept. 2020.
    [55] E. B. Bulut, D. A. Kocabas and S. Dusmez, "Optimization and design considerations of GaN-based multi-level TP PFC converters," IEEE Access, vol. 11, pp. 47291-47303, 2023.
    [56] T. T. Vu and G. Young, “Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2016, pp. 1835–1841.
    [57] T. T. Vu and E. Mickus, “99% efficiency 3-level bridgeless totem-pole PFC implementation with low-voltage silicon at low cost,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2019, pp. 2077–2083.
    [58] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. A. de Rooij, "99% efficient 2.5-kW four-level flying capacitor multilevel GaN totem-pole PFC," IEEE J. Emerging Sel. Top. Power Electron., vol. 9, no. 5, pp. 5795-5806, Oct. 2021.
    [59] C. -M. Wang, C. -H. Lin and T. -C. Yang, "High-power-factor soft-switched DC power supply system," IEEE Trans. Power Electron. , vol. 26, no. 2, pp. 647-654, Feb. 2011.
    [60] Yungtaek Jang, M. M. Jovanovic, Kung-Hui Fang and Yu-Ming Chang, "High-power-factor soft-switched boost converter," IEEE Trans. Power Electron., vol. 21, no. 1, pp. 98-104, Jan. 2006.
    [61] B. Akın and H. Bodur, "A new single-phase soft-switching power factor correction converter," IEEE Trans. Power Electron., vol. 26, no. 2, pp. 436-443, Feb. 2011.
    [62] S. Kulasekaran and R. Ayyanar, "A 500-kHz, 3.3-kW power factor correction circuit with low-loss auxiliary ZVT circuit," IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4783-4795, June 2018.
    [63] GS61008T Datasheet, GaN Systems, 2004.
    [64] IGLT65R110D2 Datasheet, GaN Systems, 2024.
    [65] EPC2050 Datasheet, EPC, 2022.
    [66] EPC2055 Datasheet, EPC, 2022.
    [67] NV6152 Datasheet, Navitas Semiconductor, 2022.
    [68] NV6158 Datasheet, Navitas Semiconductor, 2022.
    [69] Z. Yu, Y. Xia and R. Ayyanar, "A simple ZVT auxiliary circuit for totem-pole bridgeless PFC rectifier," IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2868-2878, May-June 2019.
    [70] Y. Jeong, M. -H. Park and G. -W. Moon, "High-efficiency zero-voltage-switching totem-pole bridgeless rectifier with integrated inrush current limiter circuit," IEEE Trans. Ind. Electron., vol. 67, no. 9, pp. 7421-7429, Sept. 2020.
    [71] C. A. Lai and Y. S. Lai, “New AC/DC converter considering both inrush current limitation and start-up time,” in Proc. IEEE 10th Int. Conf. Power Electron. Drive Syst., 2013, pp. 1231–1235.
    [72] Y. -D. Lee, G. -W. Moon, J. Baek and C. -E. Kim, "A reconfigurable totem-pole PFC rectifier with light load optimization control strategy and soft-switching capability," IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4371-4382, April 2021.
    [73] A. Tausif and S. Dusmez, “A new high-frequency high-efficiency GaN TP PFC with bidirectional ZVS cell,” in Proc. PCIM Europe Digit. Days; Int. Exhib. Conf. Power Electron., Intell. Motion, Renewable Energy Energy Manage., 2021, pp. 1–8.
    [74] A. Tausif, A. F. Bakan and S. Dusmez, "A high power density zero-voltage-switching totem-pole power factor correction converter," IEEE Trans. Power Electron., vol. 39, no. 1, pp. 837-849, Jan. 2024.
    [75] E. B. Bulut, M. O. Gulbahce, D. A. Kocabas, and S. Dusmez, ‘‘Efficiency and power density optimization of three-level TP PFC,’’ in Proc. PCIM Eur. Digit. Days, Int. Exhib. Conf. Power Electron., Intell. Motion, Renew. Energy Energy Manag., 2021, pp. 1–8.
    [76] Y. Xu, J. Wang, K. Xiong, and G. Yin, “A novel 5-level flying capacitor bridgeless PFC converter based on cost-effective low-voltage eGaN FETs,” Chin. J. Elect. Eng., vol. 6, no. 3, pp. 56–64, Sep. 2020.
    [77] Infineon Technologies, “CoolSiC™ totem-pole PFC design guide and power loss modeling,” Feb. 2023. [Online]. Available: https://www.infineon.com/dgdl/Infineon-Application_note_CoolSiC_Totem_Pole_PFC_Design_and_Power_Loss_Modeling-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c85ecb34701865a064ec24076
    [78] NV6128 Datasheet, Navitas Semiconductor, 2023.
    [79] G3R30MT12K Datasheet, GeneSiC Semiconductor, 2021.
    [80] GD50MPS12H Datasheet, GeneSiC Semiconductor, 2021.
    [81] NXP Semiconductors, “Average current mode interleaved PFC control: Theory of operation and the control loops design,” Feb. 2016. [Online]. Available: https://www.nxp.com/docs/en/application-note/AN5257.pdf

    無法下載圖示 校內:2029-08-16公開
    校外:2029-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE