| 研究生: |
鄭陳鴻 Zheng, Chen-Hong |
|---|---|
| 論文名稱: |
利用卡爾曼適應性觀測器於錯誤偵測與性能恢復 Fault detection and performance recovery with Kalman filter-based adaptive observer |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 卡爾曼適應性觀測器 |
| 外文關鍵詞: | Kalman filter-based adaptive observer |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個創新的卡爾曼適應性觀測器,利用卡爾曼濾波器的高增益特性,無論未知參數有多少個都可以很容易估測。根據卡爾曼適應性觀測器,我們分別提出了控制器與狀態錯誤的偵測與恢復方法。對於控制器錯誤,我們使用輸入補償的方式恢復系統。此外,最佳線性化被使用在非線性系統的控制器錯誤偵測與恢復。對於狀態錯誤,控制器重新組態方法被用來恢復系統追蹤能力。在本論文中,我們還使用了數位再設計方法來設計資料取樣系統的控制器。
A novel Kalman filter-based adaptive observer for the sampled-data system is proposed in this thesis. With high gain property of Kalman filter, no matter how large the dimension of unknown parameter is, the unknown parameter can be estimated optimally. We propose methods of actuator and state fault detection, respectively. With the estimated faults, we use the newly propose input compensation method to solve actuator faults. Additionally, the optimal linearization is used to obtain locally optimal linear models, so that the actuator fault detection and performance recovery of a nonlinear system is accomplished. For state faults, a controller reconfiguration method is applied to solve state fault. In this thesis, we also introduce a prediction-based digital redesign method to develop the sampled-data controller.
[1] M. Bodson and J. E. GROSZKIEWICZ, Multivariable adaptive algorithms for reconfigurable flight control, IEEE Transactions on Control System Technology, vol.5, no. 2, pp. 217-229, 1997 .
[2] O. Moseler and R. Isermann, “Application of model-based fault detection to a brushless DC motor”, IEEE Transactions on Industrial Electronics, vol.47, no. 5, pp. 1015-1020, 2000.
[3] E. Omerdic, and G. Roberts, “Thruster fault diagnosis and accommodation for open-frame underwater vehicles”, Control Engineering Practice, vol. 12, pp. 1575-1598, 2004.
[4] M. Fujita and E. Shimemura, “Integrity against arbitrary feedback-loop failure in linear multivariable control system”, Automatica, vol. 24, pp. 765-772, 1988.
[5] G. G. Yen and L.-W. Ho, “Online multiple-model-based fault diagnosis and accommodation”, IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
[6] Z. Gao and P. J. Antsaklis, “Reconfigurable control system and design via perfect model following”, International Journal of Control, vol. 56, no. 4, pp. 783-798, 1992.
[7] J. Jiang, “Design of reconfigurable control systems using eigenstructure assignment”, International Journal of Control, vol. 59, no.2, pp. 395-410, 1994.
[8] Q. Zhang, “Adaptive observer for multiple-input-multiple-output (MIMO) linear time varying systems,” IEEE Trans. Automat. Contr., vol. 47, pp. 525–529, Mar. 2002.
[9] K. J. and B. Wittenmark, Computer Controlled Systems: Theory and Design, New Jersey: Prentice-Hall, 1997.
[10] F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd Edition, New York: Wiley, 1986.
[11] S. M. Guo, L. S. Shieh, G. Chen, C. F. Lin, “Effective chaotic orbit tracker: a prediction-based
digital redesign approach,” IEEE Transaction on Circuits and Systems–I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
[12] J. B. Dabney and T. L. Harman, Mastering SIMULINK 2, New Jersey: Prentice-Hall, 1998.
[13] M. C. G. Teixeria and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models”, IEEE Trans. on Fuzzy Systems, vol. 7, pp. 133-142, 1999.