| 研究生: |
余永強 Yu, Yung-Chiang |
|---|---|
| 論文名稱: |
壓電微型幫浦之製作與電路設計 Development of a Drive Circuit for Peristaltic Micropumps |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 鋯鈦酸鉛 、微型幫浦 、蠕動式幫浦 、驅動電路 |
| 外文關鍵詞: | PZT, Micropump, peristaltic pump, drive circuit |
| 相關次數: | 點閱:62 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文是利用微機電技術之應用,發展出以鋯鈦酸鉛為驅動方式的微型幫浦。微幫浦主要的特性是控制微小量的流體而作輸出的動作,可應用在生物、化學及醫療系統的檢測上。微型幫浦主要由三大部份所構成:矽晶片、玻璃晶片與市售的厚膜壓電材料所組成。最初發展的是單一流室無閥微型幫浦,其主要功用為抽取液體,但為了讓幫浦全面自動化,達到自我抽取的能力,於是發展出蠕動式幫浦。
在驅動電路方面,為了使微型幫浦與電路能整合在一起,於是製作了可攜式電路,在電路上我們使用三組的差動輸出電路分別去供給三組的壓電材料,並在差動電路輸入端提供三相位、四相位與六相位多種的控制訊號。蠕動式幫浦適當的改變相位順序可達到雙相傳輸的機制。我們測得蠕動式幫浦最大的流量發生在100Hz其流量為17.580 μl/min,施予電壓在100Vpp時。由實驗結果的呈現,可看出四相位的驅動方式是優於三相位與六相位,而適當的相位改變是有助於幫浦性能的提昇。本文也嘗試推導出各種相位對流量的關係理論,其結果也顯示出四相位的性能是最好的,與實驗結果一致。
The micropump is able to deliver very low fluid volume, which has the potential to be widely used in industry. The mainly objective of the thesis is to fabricate a PZT (lead zirconate titanate) actuated micropump using MEMS technology for biomedical applications. In addition, a drive circuit for micropumps was developed to achieve the purpose of portability. Moreover, the effects of phase modes on pump performance were investigated. The micropump consists of three parts: silicon, Pyrex glass and the commercially available bulk PZT chip. The first pump fabricated is the diffuser pump. In order to achieve the capability of self priming, a peristaltic micropump with three chambers was developed. Three diff-amp circuits were designed and used to excite three PZT disks and provide the terminals with various control signals to make the diaphragm operate in three-, four- or six-phase mode. The bidirectional flow could be achieved by changing the sequence of the phase modes which applied to the micropump. Based on the experimental results, the pump performance at the four-phase mode is found to be better than that at the three- and six-phase modes. The maximum flow rate at the four-phase mode is 17.580 μl/min at 100 Hz with 100 Vpp. In addition, the theoretic model was developed to study the effect of phase modes on pump performance. The experimental results agree with the model well. It is concluded that the pump performance can be influenced by the phase mode.
1. 張志誠,"微機電技術",商周出版,2002。
2. 陳建人,"微機電系統技術與應用",行政院國家科學委員會精密儀器發展中心
出版,2003。
3. Nguyen N. T., Huang X.Y. and Toh K.C., "MEMS-micropumps: A
Review", Journal of Fluids Engineering,Vol.124, pp.384-392, 2002
4. Peter Woias, "Micropumps—past, progress and future prospects",
Sensors and Actuators B, Vol 105, pp 28-38, 2005.
5. Laser, DJ, and JG Santiago, "A review of micropumps ", J. of
Micromechanics and Microengineering vol. 14, pp.R35-R64, 2004.
6. 李國賓,"微流體生醫晶片下一波生物晶片",科學發展雜誌,385期,2005。
7. Jun Xie, Jason Shih, Qiao Lin, Bozhi Yang and Yu-Chong Tai, "Surface
micromachined electrostatically actuated micro peristaltic pump", Lab
on a Chip, pp.495-501, 2004.
8. Xie, J., J. Shih, and Y.-C. Tai, "Integrated Surface-Micromachined
Mass Flow Controller", in MEMS '03. 2003: Kyoto, Japan.
9. Ok Chan Jeong, Sin Wook Park, Sang Sik Yang and James Jungho
Pak, "Fabrication of a peristaltic PDMS micropump", Sensors &
Actuators A, 2005. (in press)
10. C. Grojean, X. Yang and YC Tai, "A Thermopneumatic Peristaltic
Micropump", Transducers 1999, pp.1776-1779.
11. Dae-Sik Lee, Jong Soo Ko and Youn Tae Kim, "Bidirectional pumping
properties of a peristaltic piezoelectric micropump with simple design
and chemical resistance", Thin Solid Films, Vol.468, pp. 285-290.
12. Dae-Sik Lee, Hyun C. Yoon and Jong Soo Ko, "Fabrication and
characterization of a bidirectional valveless peristaltic micropump
and its application to a flow-type immunoanalysis", Sensors and
Actuators B, pp.409-415, 2004.
13. Husband B, Bu M, Evans A G R and Melvin T, " Investigation for the
operation of an integrated peristaltic micropump", Journal of
Micromechanics and Microengineering, 14(9):S64-S69, 2004.
14. Bu Minqiang, Melvin Tracy, Ensell Graham J., Wilkinson James S and
Evans A. G. R., "A new masking technology for deep glass etching and
its microfluidic application", Sensors and Actuators A , pp. 476-482,
2004.
15. Husband B., Bu M, Aspostoloupoulos V., Melvin T. and Evans A. G. R. "
Novel actuation of an integrated peristaltic micropump",
Microelectronic Engineering, 73-74:pp. 858-863, 2004.
16. L Cao, S Mantell and D Polla, "Design and Simulation of an
Implantable Medical Drug Delivery System Using Microelectromechanical
Systems Technology", Sensors and Actuators A, No. 1–2 (2001): pp117–
125.
17. Tingrui Pan, Eleanor Kai, Matthew Stay, Victor Barocas and Babak
Ziaie, "A Magnetically Driven PDMS Peristaltic Micropump", Proceedings
of the 26th Annual International Conference of the IEEE EMBS San
Francisco, pp2639-2642, 2004.
18. 郭盈成,"新式微幫浦與微閥門之設計與製作",國立成功大學工程科學系 92碩
士班論文。
19. 曾昭富,"微幫浦整合於細胞性質量測晶片之設計製作及測試",國立成功大學
微機電系統工程系 93碩士班論文。
20. 劉光興,"蠕動無閥式微幫浦之鑑別與分析",國立清華大學動力機械工程學系
86 碩士班論文。
21. Pol F. C. M. van de, "A pump based on micro-engineering techniques",
Thesis, University of Twente, the Netherlands, 1989.
22. A. Olsson, "Valve-Less Diffuser Micropumps", Royal Institute of
Technology, Stockholm, Sweden, 1998.
23. A. Olsson, G. Stemme, and E. Stemme, "Numerical and experimental
studies of flat-walled diffuser elements for valve-less micropumps",
Sensors and Actuators A, Vol 84, No 1-2, pp165-175, 2000.
24. 吳朗,"電子陶瓷:壓電",全欣科技圖書,1994。
25. http://www.piezo.com/prodsheet2sq5H.html#priceinfo
26. Frank M. White, "Fluid Mechanics", 4nd Ed., McGraw-Hill, pp372, 1999.
27. Wallis, G.; Pomerantz, D. I., "Field-assisted glass-metal sealing",
Journal of Applied Physic, pp. 3946–3949, 1969.
28. Adel S. Sedra and Kenneth C. Smith, "Microelectronics Circuits",
Fourth edition, HRW, 1992.