簡易檢索 / 詳目顯示

研究生: 張簡志傑
CHIEN, CHIH-CHIEH CHANG
論文名稱: 低溫共燒技術製作降壓式壓電變壓器及其應用於手機充電器
Fabrications and Investigations of Step-Down Piezoelectric Transformers by Low-Temperature Cofired Ceramics Technology and Application on Cell Phone Battery Chargers
指導教授: 朱聖緣
CHU, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 刮刀成型低溫共燒壓電變壓器
外文關鍵詞: tape casting, Low-Temperature Cofired, piezoelectric transformer
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗乃使用實驗室所開發的低溫燒結陶瓷材料,以tape casting的手法製作出單片80μm陶瓷生胚(green tape),但其單層機械強度不足,故將其堆疊均壓再燒結可得厚度250μm之薄片,再利用SEM、壓電參數分析薄片與塊體的差異。隨著燒結溫度的變化,材料及壓電特性也隨之改變,進而改變壓電變壓器特性。
    實驗樣品單層的壓電變壓器其尺寸為長2.7mm寬2.7mm高0.4mm,所設計的壓電變壓器結構只需將輸出入調換即可達到升降壓之目的,樣品燒結溫度分別為860℃、880℃、900℃三個溫度點,發現單層結構下power隨kp上升而上升,Qm上升Gain反而下降,實驗發現在880℃最佳負載100Ω時power 0.97w可達gain 0.52,故討論疊層數對壓電變壓器的影響時固定燒結溫度為880℃,實驗結果可得隨著疊層數增多,power隨之變大並可提昇其效率且使負載電阻的範圍增大。但隨著疊層數增加gain亦隨之上升使得降壓效果變差。以低溫共燒技術製備五層壓電變壓器降壓可得最大power 11 w、最大效率96%,並實際連接壓電變壓器於驅動電路直接充電手機。

    The material of piezoelectric transformer in this work was prepared by low temperature co-fire ceramics technology according to our previous study. A 80 μm thickness green tape was casted by the tape casting method. Owing to the low mechanical strength, 4 layers green tape had been stacked to increase the mechanical strength. The difference between bulk and tape can be verified by SEM, piezoelectric properties. The piezoelectric properties change along with the different sintering temperature, which would change the properties of the piezoelectric transformers.
    The dimension of the piezoelectric transformer is 2.7mm*2.7mm*0.4mm. By designing proper silver paste pattern of the piezoelectric transformer the mode of step-up or step-down can be adjusted by alternative the input and output. The sintering temperature are 860℃、880℃、900℃ respectively. In the single layer structure of piezoelectric transformer the power increase with the increasing kp, on the contrary the Gain decrease with the increasing Qm.
    According to the experiment result, when the best load is 100Ω the power and gain are 0.97w and 0.52 respectively. The sintering temperature of the multilayer piezoelectric transformer was fixed at 880.When the layer increases, the power and efficiency increased, in the same time the tolerance of the load increased also. The step-down ratio increased while the increasing layers. The 5-layers piezoelectric transformer was fabricated by low temperature co-fire ceramics technology. The power and efficiency are 11 w and 96% which was connected to driving circuit to charge a cell phone.

    摘要 I ABSTRACT III 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文架構 9 第二章 原理 10 2.1 LTCC簡介 10 2.2 壓電效應 11 2.2.1 正壓電效應(Direct piezoelectric effect) 11 2.2.2 逆壓電效應(Converse piezoelectric effect) 12 2.3 壓電諧振體 14 2.4 壓電材料之種類 18 2.4.1壓電材料之種類與ABO3陶瓷材料 18 2.5 壓電特性參數 20 2.5.1 機電耦合因數(electromechanical coupling factor, K) 20 2.5.2 機械品質因數(mechanical quality factor) 22 2.6 介電原理 22 2.6.1 介電理論 22 2.7 鐵電效應 25 2.7.1 電滯曲線 26 2.8 壓電變壓器基本原理 28 2.8.1 壓電變壓器工作原理 28 2.8.2 壓電變壓器等效電路及模型分析 31 第三章 製程步驟與量測 42 3.1陶瓷體的製備 42 3.1.1 粉體製備 42 3.1.2 Bulk 42 3.1.3 Tape casting 44 3.2 壓電變壓器的製作 49 3.3陶瓷體特性分析與量測 54 3.3.1 XRD 54 3.3.2 SEM 55 3.3.3 密度 55 3.3.4 電性量測 55 3.4 壓電變壓器量測 62 第四章 結果與討論 64 4.1 燒結溫度對壓電特性及微結構的影響 64 4.1.1燒結溫度對bulk壓電特性及微結構的影響 64 4.1.2燒結溫度對tape壓電特性及微結構的影響 68 4.1.3 燒結溫度對bulk與tape之特性比較 71 4.2壓電變壓器之特性 73 4.2.1 燒結溫度對單層壓電變壓器之壓電特性的影響 74 4.2.2導納對單層壓電變壓器的影響 77 4.2.3 Kp對單層壓電變壓器特性之影響 80 4.2.4 單層壓電變壓器特性總結 84 4.2.6 壓電變壓器實際應用 95 第五章 結論 97 5.1 結論 97 5.2 未來研究方向 98 參考文獻 99

    [1] S. Roberts, "Dielectric and piezoelectric properties of barium titanate," Physical review, vol. 71, p. 890, 1947.
    [2] B. Jaffe, et al., "Properties of piezoelectric eramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3," J. Res. Nat. Bur. Stds., vol. 55, p. 239, 1955.
    [3] Q. Tan and D. Viehland, "Influence of Thermal and Electrical Histories on Domain Structure and Polarization Switching in Potassium Modified Lead Zirconate Titanate Ceramics," Journal of the American Ceramic Society, vol. 81, pp. 328-336, 1998.
    [4] J. Herbert, Ferroelectric transducers and sensors vol. 3: Routledge, 1982.
    [5] J. Yoo, et al., "Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer," Japanese Journal of Applied Physics, vol. 46, pp. L486-L488, 2007.
    [6] T. Idogaki, et al., "Bending and expanding motion actuators," Sensors and Actuators A: Physical, vol. 54, pp. 760-764, 1996.
    [7] C. Galassi, et al., "Processing of a multilayer bender type actuator," Journal of the European Ceramic Society, vol. 21, pp. 2011-2014, 2001.
    [8] E. Defay, et al., "PZT thin films integration for the realisation of a high sensitivity pressure microsensor based on a vibrating membrane," Sensors and Actuators A: Physical, vol. 99, pp. 64-67, 2002.
    [9] P. Verardi, et al., "Pulsed laser deposition of multilayer TiN/Pb (ZrxTi1-x) O3 for piezoelectric microdevices," Sensors and Actuators A: Physical, vol. 74, pp. 41-44, 1999.
    [10] R. Zuo, et al., "Modified cofiring behaviors between PMN-PNN-PZT piezoelectric ceramics and PZT-doped 70Ag-30Pd alloy metallization," Materials Science and Engineering A, vol. 326, pp. 202-207, 2002.
    [11] K. Saegusa, "Preparation by a sol-gel process and dielectric properties of lead zirconate titanate glass-ceramic thin films," Jpn. J. Appi. Phys. Vol, vol. 36, pp. 3602-3608, 1997.
    [12] D. E. WITTMER and R. C. BUCHANAN, "Low Temperature Densification of Lead Zirconate Titanate with Vanadium Pentoxide Additive," Journal of the American Ceramic Society, vol. 64, pp. 485-490, 1981.
    [13] G. Zhilun, et al., "Low Temperature Sintering of Lead Based Piezoelectric Ceramics," Journal of the American Ceramic Society, vol. 72, pp. 486-491, 1989.
    [14] S. Takahashi, "Sintering Pb(Zr,Ti)O3 ceramics at low temperature," Jpn. J. Appl. Phys., vol. 19, p. 771, 1980.
    [15] S. Kawashima, et al., Proc.-IEEE Ultrason. Symp.l, vol. 1, p. 525, 1994.
    [16] Y. Fuda, et al., " Jpn. J. Appl. Phys," Part1, vol. 36, p. 3050, 1997.
    [17] J. H. Hu, et al., "Jpn. J. Appl. Phys," Part 1, vol. 138, p. 3208, 1999.
    [18] O. Ohnishi, et al., "Proc.-IEEE Ultrason," Symp, vol. 1, p. 483, 1992.
    [19] M. Yamamoto, et al., "Jpn. J. Appl. Phys.," Part 1, vol. 140, p. 3637, 2001.
    [20] T. Tsuchiya, et al., "Finite element simulation of piezoelectric transformers," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 48, pp. 872-878, 2001.
    [21] P. Laoratanakul, et al., "Unipoled disk-type piezoelectric transformers," Jpn. J. Appl. Phys, vol. 41, p. 1446¡V1450, 2002.
    [22] L. Li, et al., "Multilayer piezoelectric ceramic transformer with low temperature sintering," Journal of Materials Science, vol. 41, pp. 155-161, 2006.
    [23] S. Priya, "High power universal piezoelectric transformer," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, pp. 23-28, 2006.
    [24] J. Yoo, et al., "Electrical properties of low temperature sintering multilayer piezoelectric transformer using Pb(Mn1/3Nb2/3)O3-Pb(Zn1/3 Nb2/3)O3-Pb(Zr, Ti)O3 ceramics," Sensors and Actuators, A: Physical, vol. 137, pp. 81-85, 2007.
    [25] K. T. Chang, et al., "Effects of electrode layouts on voltage gain characteristics for ring-shaped piezoelectric transformers," Sensors and Actuators A: Physical, vol. 141, pp. 166-172, 2008.
    [26] 吳朗, "電子陶瓷-壓電," 全欣科技圖書, vol. 7, 1994.
    [27] Z. Yang, et al., "Structure and electrical properties of PZT-PMS-PZN piezoelectric ceramics," Journal of the European Ceramic Society, vol. 26, pp. 3197-3202, 2006.
    [28] B. Jaffe, et al., Piezoelectric ceramics vol. 115: Academic Press London, 1971.
    [29] Q. Zhang, et al., "PVDF transducers-A performance comparison of single-layer and multilayer structures," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 44, pp. 1148-1156, 1997.
    [30] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications: John Wiley & Sons Inc, 2003.
    [31] 邱碧秀, 電子陶瓷材料: 全欣科技圖書, 1997.
    [32] R. L. Lin, "Piezoelectric transformer characterization and application of electronic ballast," Virginia Polytechnic Institute and State University, 2001.
    [33] R. P. Bishop, "Multi-layer piezoelectric transformer," ed: Google Patents, 1998.
    [34] 姜岳廷, "應用圓型疊層壓電變壓器於降壓式電源轉換器之研究," 2004.
    [35] J. L. Du, et al., "IEEE Transactions," Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, p. 579, 2006.
    [36] 邱良祥, "環形壓電變壓器應用於直流電源轉換器之研究," 國立成功大學電機工程學系碩士論文, 2002.
    [37] 張博舜, "圓盤形壓電變壓器之研究," 國立高雄應用科技大學機械與精密工程研究所碩士論文, vol. 4, pp. 261-276, 2007.
    [38] D. Hotza and P. Greil, "Review: aqueous tape casting of ceramic powders," Materials Science and Engineering A, vol. 202, pp. 206-217, 1995.
    [39] 古皓偉, "低溫共燒陶瓷系統的束縛燒結," 國立清華大學 材料科學工程學系, 2005.
    [40] J. Yoo, et al., "Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer," Japanese Journal of Applied Physics, Part 2: Letters, vol. 46, pp. L486-L488, 2007.
    [41] F. Levassort, et al., "A complete range of tape-cast piezoelectric thick films for high frequency ultrasonic transducers," 2003, pp. 2003-2006 Vol. 2.
    [42] S. Priya, et al., "Multilayered unipoled piezoelectric transformers," Japanese Journal of Applied Physics, vol. 43, pp. 3503-3510, 2004.

    無法下載圖示 校內:2016-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE