| 研究生: |
徐毓昕 Syu, Yu-Sin |
|---|---|
| 論文名稱: |
使用頻率偵測器之寬頻鎖定雙迴路類比式延遲鎖定迴路 A Dual-Loop Wide-Range Analog Delay Lock Loop with a Frequency Detector |
| 指導教授: |
劉濱達
Liu, Bin-Da 魏嘉玲 Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 延遲鎖定迴路 、雙迴路 、寬頻 |
| 外文關鍵詞: | Delay lock loop, dual loop,, wide range |
| 相關次數: | 點閱:87 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個應用在寬頻操作頻率的延遲鎖定迴路,具有良好的抖動性能。本架構使用頻率偵測器來自動選擇電荷幫浦的電流值,並改善電壓控制延遲線的非線性現象,以保持抖動性能和鎖定時間。此系統使用雙迴路架構,其細調迴路目的使相位偵測器的死帶縮小,以提升抖動效能。
此延遲鎖定迴路採用聯華電子公司0.18 um一層多晶矽六層金屬導線互補式金屬氧化物半導體製程實現,晶片面積為0.14 mm2。由佈局模擬結果顯示,可操作之頻率範圍為20 MHz至1 GHz。在電源電壓為 1.8 V和操作頻率為1 GHz的量測條件下,峰對峰值抖動為23 ps,功率消耗為20.9 mW。
This thesis proposes a delay lock loop that operates over a wide frequency range and exhibits good jitter performance. The adopted frequency detector determines the current for the charge pump, which can improve the nonlinear delay gain of the voltage-controlled delay line to maintain the jitter performance and the locking time. Besides, a dual loop is applied in the system to minimize the dead zone of the phase detector, increasing the jitter performance.
The proposed DLL has been fabricated by UMC 0.18-µm 1P6M CMOS technology, and the core area of the chip is 0.14 mm2. Simulation results show that the proposed DLL can achieve the frequency range from 20 MHz to 1 GHz at 1.8 V supply voltage. When the operation frequency is 1 GHz, the peak-to-peak jitter is 21 ps and the power consumption is 20.9 mW.
[1] G. Chien and P. R. Gray, “A 900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1996–1999, Dec. 2000.
[2] Y. Liu, Y. Wang, S. Jia, and X. Zhang, “180.5 Mbps–8 Gbps DLL-based clock and data recovery circuit with low jitter performance,” in Proc. IEEE Int. Symp. Circuits Syst., May 2015, pp. 1394–1397.
[3] C.-N. Chuang and S.-I. Liu, “A 3–8 GHz delay-locked loop with cycle jitter calibration,” IEEE Trans Circuits Syst. II, Exp. Briefs, vol. 55, no. 11, pp.1094–1098, Nov. 2008.
[4] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723–1732, Nov. 1996.
[5] R.-J. Yang and S.-I. Liu, “A 2.5 GHz all-digital delay-locked loop in 0.13 m CMOS technology, ” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2338–2347, Nov. 2007.
[6] H.-H. Chang, J.-W. Lin, C.-Y. Yang, and S.-I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp.1021–1027, Aug. 2002.
[7] K.-H. Cheng and Y.-L. Lo, “A fast-lock wide-range delay-locked loop using frequency-range selector for multiphase clock generator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 7, pp. 561–565, July 2007.
[8] Y. Moon, J. Choi, K. Lee, D.-K. Jeong, and M.-K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 377–384, Mar. 2000.
[9] Y.-L. Lo, P.-Y. Chou, H.-H. Cheng, S.-F. Tsai, and W.-B. Yang, “An all-digital DLL with dual-loop control for multiphase clock generator,” in Proc Int. Symp. Integr. Circuits, Dec. 2011, pp. 388–391.
[10] A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, pp. 1055–1057, June 1996.
[11] G.-K. Dehng, J.-M. Hsu, C.-Y. Yang, and S.-I. Liu, “Clock-deskew buffer using a SAR-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1128–1136, Aug. 2000.
[12] C.-N. Chuang and S.-I. Liu, “A 20-MHz to 3-GHz wide-range multiphase delay-locked loop,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 11, pp. 850–852, Nov. 2009.
[13] J.-W. Park, N.-S. Kim, R.-I. Jeong, D.-S. Won, and R.-Y. Choi, “High performance two-stage charge-pump for spur reduction in CMOS PLL,” in Proc Int. Multi-Conf. Syst., Signals Devices, Feb. 2014, pp. 1–5.
[14] 劉深淵,楊清淵, “鎖相迴路”,滄海書局, 2008.
[15] Y.-H. Tu, K.-H. Cheng, H.-Y. Wei, and H.-Y. Huang, “A low jitter delay-locked-loop applied for DDR4,” in Proc. IEEE Int. Symp. Des. Diagnostics Electron. Circuits Syst., Apr. 2013, pp. 98–101.
[16] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc IEEE Int. Symp. Circuits Syst., Aug. 2002, pp. 545–548.
[17] M. Lee and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769–777, Apr. 2008.
[18] H.-J. Kwon, J.-S. Lee, J.-Y. Sim, and H.-J. Park, “A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio,” in Proc IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 325–328.
[19] S. Han and J. Kim, “A high-resolution wide-range dual-loop digital delay-locked loop using a hybrid search algorithm,” in Proc IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 293–296.
[20] Y.-H. Moon, I.-S. Kong, Y.-S. Ryu, and J.-K. Kang, “A 2.2-mW 20–135-MHz false-lock-free DLL for display interface in 0.15-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 554–558, Aug. 2014.
[21] K. Ryu, J. Jung, D.-H. Jung, J.-H. Kim, and S.-O. Jung, “High-speed, low-power, and highly reliable frequency multiplier for DLL-based clock generator,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24, no. 4, pp. 1484–1491, Apr. 2016.
[22] W.-M. Lin, K.-F Teng, and S.-I. Liu, “A delay-locked loop with digital background calibration” in Proc IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 317–320.
[23] Z. Li, S. Zheng and N. Hou, “Design of a high performance CMOS charge pump for phase-locked,” in Proc Asia-Pacific Conf. Commun., Oct. 2009, pp. 209–212.
[24] C.-C. Chen and S.-I Liu, “An infinite phase shift delay-locked loop with voltage-controlled sawtooth delay line,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2413–2420, Nov. 2008.
[25] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[26] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[27] Alldatasheet.com, Electronic Components Datasheet Search. [Online]. Available: http://www.alldatasheet.com/view.jsp?Searchword=LM317
[28] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 134–141, Feb. 2000.
[29] A. M. Abas, A. Bystrov, D. J. Kinniment, O. V. Maevsky, G. Russell, and A.V. Yakovlev, “Time difference amplifier,” Electron. Lett., vol. 38, no. 23, pp. 1437–1438, Nov. 2002.