| 研究生: |
葉淳 Jap, Franco |
|---|---|
| 論文名稱: |
氧化鋁基板處理對鎳鉻矽薄膜電阻特性探討之研究 Effect of Alumina Substrate Pretreatment on the Characteristics of NiCrSi Thin Film Resistor |
| 指導教授: |
李文熙
Lee, Wen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 直流磁控濺鍍 、射頻磁控濺鍍 、薄膜電阻 、鎳鉻矽 、氧化鋁 |
| 外文關鍵詞: | DC magnetron sputtering, RF magnetron sputtering, thin film resistors, Ni-Cr-Si, Al2O3 |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是為了在兩種氧化鋁基板(Leatec與CeramTec)尋找鎳鉻矽薄膜的最佳條件。因為一般的氧化鋁基板的表面粗糙度是非常高的,此研究主要找出氧化鋁薄膜的最佳沉積條件,以改善其表面粗糙度,因為表面粗糙度對鎳鉻矽薄膜為有極大影響。
首先鎳鉻矽薄膜在不同濺射功率和不同薄膜厚度的電性進行探討,以鎳鉻矽薄膜未經處理的和預處理的氧化鋁基板之間的關係。在鎳鉻矽薄膜的實驗中用濺鍍功率增加,其厚度也會增加,另一方面,膜厚度的增加將導致電阻降低。提高在退火溫度會使電阻也增加,而直流磁控濺鍍5W-20分鐘的電阻比射頻磁控濺鍍40W-30分鐘高得多。退火溫度上升,使TCR去朝正趨勢,而在射頻磁控濺鍍 40W-30分鐘的條件下,退火溫度350℃,退火時間為4h,有最穩定的TCR,在Leatec基板上沉積鎳鉻矽薄膜之最佳條件其TCR值為7ppm/℃。通過原子力顯微鏡可以發現,氧化鋁膜厚度的增加,在氧化鋁基板的表面粗糙度有明顯的降低,而氧化鋁基板具有較高的表面能量將導致鎳鉻矽薄膜較不容易沉積在基板上。氧化鋁薄膜在氬氣/氧氣流量為5/55 sccm,未退火的時具有最佳的表面能為41 J/m2。
This research is about finding the best condition of Ni-Cr-Si thin film on two kinds of alumina substrate (Leatec and Ceramtec). Because the general alumina substrate’s surface roughness is very high, this study intends to find the best condition of aluminum oxide thin film as it was found to have a profound effect to amend its surface roughness.
Examination on the changes in electrical properties of Ni-Cr-Si thin films at different sputtering power and different thin film thickness were done to identify the relationship between untreated and pretreated alumina substrate to Ni-Cr-Si films. In the experiment of Ni-Cr-Si thin film can be found with the increase of sputtering power, its thickness will also increase, in the other hand, increase of film thickness will result in the decrease in resistance. Increase in annealing temperature will make resistance also increases, while the resistance of DC 5W-20minutes is much higher than RF 40W-30minutes. The increase in annealing temperature will makes TCR to go towards positive trends, with the conditions of RF 40W-30 minutes, annealing temperature 350 ℃ and annealing time 4 hours as the best condition for stable TCR, Leatec substrate that has been coated with Ni-Cr-Si thin film has better electrical properties, its value is 7 ppm/℃. Aluminum thin film at Ar/O2 flow rate of 55/5 sccm, unannealed, has the best surface energy at 41 J/m2. Through AFM can be found that with the increase of aluminum oxide film thickness, surface roughness of the alumina substrate will decrease. Alumina substrate with higher surface energy will result in more difficult dep osition of thin film. Using alumina substrate (Leatec) that has been coated with aluminum oxide film to be deposited to Ni-Cr-Si film can effectively reduce the resistance distribution.
1. S. O. Kasap, Principles of Electronic Materials and Devices Third ed. p.126 (2006).
2. W. brückner, H. Grießmann, H. Schreiber, H. Viinzelberg, A. Heinrich, Thin Solid Films 214, p.84 (1992).
3. K. Hieber, R. Dittmann, Thin Solid Films 36, p.357 (1976).
4. R. Moffatt Kennedy, Materials for Thin Film Resistors, Advancing Microelectronics, p.12-17, (1999).
5. J. J Van Den Broek, J. J. T. M. Donkers, R. A. F Van Der Rijt, J.T.M. Janssen, Metal Film Precision Resistors: Resistive Metal Films and a New Resistor Concept, Philips Journal of Research, Vol.51, No.3, p.429-427 (1998).
6. Schroder, Dieter K. Semiconductor Material and Device Characterization. p.1–55 (1998).
7. Jaeger, Richard C. Introduction to Microelectronic Fabrication Second ed. p.81–88 (2002).
8. B. Larry, Performance of Thin-Film Chip Resistors, Transactions on Components and Manufacturing Technology, IEEE, Vol.17, No.3, p.359-365 (1994).
9. R. W. Kuehl, Predictable Components - Stability of Thin Film Resistors, p.155 -161 (2000).
10. C. Y. Tseng, Development of High Resistance of Thin Film Resistor by Sputtering, Master Thesis of National Cheng Kung University (2000).
11. C. A. Mack, Field Guide to Optical Lithography, (2006).
12. YAGEO CORPORATION http://www.yageo.com.
13. S. W. Khe, Chuan Hwa Book, (2004).
14. Y. Sadafumi, Y. Shiraki, Chuan Hwa Book, (2004).
15. T. H. Lan, I-Shou University, Material Engineering Master Thesis, (2005).
16. M. P. Tiem, Wu Nan Culture Enterprise, (2007).
17. K. M. Hsu, Metal Industries Research and Development Centre, (2005).
18. S. M. Rossnagel, Directional and Preferential Sputtering-Based Physical Vapor Deposition, Thin Solid Films, Vol.263, p.1-12 (1995).
19. K. H. Dae, K. H. Eun, C. Siyoung, Y. Y. Bong and L. D. Hyeon, Microstructure Analyses of the Titanium Films Formed by the Ionized Sputtering Process, Thin Solid Films, Vol.340, p.13-17 (1999).
20. D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie&Son Ltd., London, Vol.196, (1991).
21. C. C. Jiang, M. H. Cheng, H. Y. Hsiao, C. H. Chai, C. S. Chen, P. S. Chai, C. Y. Kao, Journal of the Vacuum Society of the R.O.C 13(2), p.64-67 (1999).
22. F. C. Shieh, Y. C. Yung, Instruments Today 14 (5), p.57-69 (1993).
23. F. C. Shieh, Y. C. Yung, Instruments Today 14 (6), p.25-37 (1993).
24. H. K. Tung, L. W. Chang, Technology and Development 27 (4), p.146-152 (2002).
25. C. C. Tung, K. R. Chen, Science Development 354, p.52-59 (2002).
26. L. J. Vossen, and W. Kerm, Thin Film Process, Academic Process, p. 134 (1999).
27. W. Ensinger, K. Volz and B. Enders, An Apparatus for In-Situ or Sequential Plasma Immersion Ion Beam Treatment in Combination with R.F. Sputtered Deposition or Triode D.C. Sputter Deposition, Surface and Coating Technology 120, p.343-346 (1999).
28. M. A. Nicolet, Diffusion Barriers in Thin Films, Thin Solid Films, Vol. 52, p. 415 (1978)
29. W. Y. Liu, Electrical and Optical Characterizations of ZnO Thin Film by RF Magnetron Sputtering, (2000)
30. D. J. Healey and M. Laurient, Impedance Matching Network for RF Sputtering System, Vacuum, Vol. 17, No. 3, pp.165 (1967)
31. Y. S. Jung, D. W. Lee, D. Y. Jeon, Applied Surface Science 221, p.136–142 (2004).
32. R. D. Arnell and P. J. Kelly, Recent Advances in Magnetron Sputtering, Surface and Coating Technology, Vol.112, pp.170-176 (1999).
33. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology, (1982).
34. J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, Inc. ,Bonton, pp. 21 (1991).
35. L. J. Vossen, and W. Kerm, “Thin Film Process”, Academic Process, p. 134 (1999).
36. B. A. Movchan, A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide 28, p.83-90 (1969).
37. J. A. Thornton, Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings, Journal of Vacuum Science and Technology, p.830-835 (1986).
38. T. S. Cin, Electronic Material and Application, (2000).
39. P. M. Hall, Resistance Calculations for Thin Film Rectangles, Thin Solid Films, Vol.300, p.256-264 (1999).
40. K. C. Huang, Measurement Information 65 (1) p.32-36 (1999).
41. S. Y. Kung, Y. Yang, M. Kuan, Journal of Shanghai University 2, p.160-163 (1999).
42. K. S. Bhat, S. K. Datta and C. Suresh, Electrical and Microwave Characterization of Kanthal Thin Films, Temperature and size effect, Thin Solid Films, Vol.332, p.220-224 (1998).
43. L. I. Belic, K. Pozun and M. Remskar, AES, AFM and TEM Studies of NiCr Thin Films for Capacitive Humidity Sensors, Thin Solid Films, Vol.317, p.173-177 (1998).
44. C. M. Wang, J. H. Hsieh, C. Lia, Y. Fua and T. P. Chenb, Effects of Annealing on the Microstructure and Electricalproperties of TaN-Cu Nanocomposite Thin Films, Surface & Coatings Technology , Vol.193, p.173-177 (2005).
45. E. Riad, A. R. Aicha and D. Barlow, Thin Film Technology Handbook, McGraw-Hill, (1998).
46. Y. Taga and R. Takahasi, Role of Kinetic Energy of Sputtered Particles in Thin Film Formation, Surface science, Vol.386, p.231-240 (1997).
47. K. Rajanna and M. M. Nayak, Strain Sensitivity and Temperature Behavior of Invar Alloy Films, Materials Science and Engineering, p.288-292 (2000).
48. Leon I. Maissel Reinhard Glang, Handbook of Thin Film Technology p.18-41 (1995).
49. Ehiasarian, Arutium P.; Wen, J. G.; Petrov, I. Interface Microstructure Engineering by High Power Impulse Magnetron Sputtering for the Enhancement of Adhesion. Journal of Applied Physics 101 (2007)
50. C. C. Chang, J. H. Chang and S. K. Fang, The Study of the Influence of Sputtering Parameters and Substrates to ZnO Thin Film Structure, Chinese Journal of the Materials Science, vol.26, no.1, p.59-63 (1994).
51. W. Abdul-Razzaq and M. Amouruso, Electron Transport Properties of Ni and Cr Thin Films, Physica B, Vol.253, p.47-51 (1998).
52. M. Girtan and G. I. Rusu, On the Size Effect in In2O3 Thin Films, Analele Stintifice Ale Universitat II, p.166-172 (1999-2000).
53. W. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, (2007).
54. L. S. Zhang, Y. Zheng, Optimization of CrSi Resistor Annealing Conditions, Microelectronics, Vol. 38, No.3, p.316-319 (2008).
55. T. Lyman, Metals Handbook 8th Ed, Vol. 2, p. 494 (1979).
56. D. P. Woodruff, The Chemical Physics of Solid Surfaces Vol.10, (2002).
57. K. H. Bäther, G. Zeis, R. Voigtmann, et al., Thin Solid Films 188 p.67 (1990).
58. N.K. Adam, Use of the term ‘Young Equation’ for contact angle, Nature 180 p.809-810 (1957).
59. D.P. Woodruff, The Chemical Physic of Solid Surfaces Vol.10 (2002).