簡易檢索 / 詳目顯示

研究生: 吳東翰
Wu, Tung-Han
論文名稱: 以磁控濺鍍法沉積鋁鎵錫氧化物薄膜電晶體及其光電元件之探究
Research of Aluminum Gallium Tin Oxide Thin Films and their Optoelectrical Devices Fabricated by RF Sputtering
指導教授: 陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 97
中文關鍵詞: 氧化鋁鎵錫紫外光感測器薄膜電晶體紫外光電晶體
外文關鍵詞: Aluminum Gallium Tin Oxide, UV photodetector, Thin-film transistor, UV phototransistor
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 II Abstract V 致謝 VIII Content IX Table Caption XI Figure Captions XII Chapter 1 1 1.1 Background and Motivation 1 1.2 Organization of This Thesis 2 Reference 3 Chapter 2 5 2.1 Theory of Photodetector 5 2.1.1 Responsivity of the Photodetector 6 2.1.2 Photo to dark Current Ratio (PDCR) 6 2.1.3 Ultraviolet(UV)-to-visible Rejection Ratio 7 2.2 Theory of Thin-Film Transistor 7 2.2.1 Threshold Voltage(Vth) 10 2.2.2 Field-Effect Mobility(μ) 10 2.2.3 On/off Current Ratio(Ion/Ioff) 10 2.2.4 Subthreshold Swing(SS) 11 2.2.5 Interface Trap Density(Nit) 11 2.3 Experimental Equipment 11 2.3.1 Radio-frequency Sputtering System 11 2.3.2 Plasma-enhanced Chemical Vapor Deposition(PECVD) 14 2.3.3 Electron Beam Evaporation 14 2.3.4 Thermal Evaporation System 15 2.3.5 X-ray Diffraction Analysis (XRD) 16 2.3.6 Atomic Force Microscopes(AFM) 18 2.3.7 X-ray Photoelectron Spectroscopy(XPS) 18 2.3.8 Measurement Systems 18 Reference 19 Chapter 3 22 3.1 Growth of AlGaSnO Thin Film 22 3.2 Optical Characteristics 23 3.3 X-ray Diffraction (XRD) Analysis 26 3.4 Atomic Force Microscopes (AFM) Analysis 27 3.5 X-ray Photoelectron Spectroscopic (XPS) analysis 30 Reference 33 Chapter 4 34 4.1 Motivation 34 4.2 Fabrication of AGTO MSM Photodetectors 35 4.3 Characteristics of AGTO MSM Photodetectors 36 4.3.1 Characteristics of AGTO MSM Photodetectors with changing oxygen flow rate 36 4.3.2 Characteristics of AGTO MSM Photodetectors with changing SnO2 power 41 4.3.3 Time-resolved Response of AGTO MSM Photodetector 45 4.4 Summary 46 Reference 47 Chapter 5 50 5.1 Motivation 50 5.2 Fabrication of AGTO Thin-Film Transistors 51 5.3 Characteristics of AGTO Thin-film Transistors 52 5.3.1 Characteristics of AGTO Thin-film Transistors with different SnO2 power 52 5.3.2 Characteristics of AGTO Thin-film Transistors with different oxygen flow rate 58 5.3.3 Double-channel thin-film transistor 61 5.4 Elemental Analysis of AGTO Thin-film transistors 64 5.4.1 Transmission Electron Microscopy(TEM) Analysis 64 5.4.2 Energy Dispersive Spectra (EDS) Analysis 65 5.5 Characteristics of AGTO Thin-film Phototransistors 68 5.6 Time-Resolved Response of AGTO Thin-film Phototransistors 71 5.7 Summary 73 Reference 74 Chapter 6 79 6.1 Conclusion 79 6.2 Future Work 81

    Chapter 1
    [1] Hosono, Hideo. “Recent Progress in Transparent Oxide Semiconductors: Materials and Device Application.” Thin Solid Films, vol. 515, no. 15, May 2007, pp. 6000–6014, https://doi.org/10.1016/j.tsf.2006.12.125. Accessed 25 May 2022.
    [2] F. Gherendi, M. Nistor and N. B. Mandache, "In2O3 Thin Film Paper Transistors," in Journal of Display Technology, vol. 9, no. 9, pp. 760-763, Sept. 2013, doi: 10.1109/JDT.2013.2278036.
    [3] Liang, Huili, et al. “Recent Progress of Deep Ultraviolet Photodetectors Using Amorphous Gallium Oxide Thin Films.” Physica Status Solidi (A), vol. 218, no. 1, 14 Oct. 2020, p. 2000339, https://doi.org/10.1002/pssa.202000339. Accessed 29 Oct. 2022.
    [4] Bae, Kang-Hwan, et al. “Effects of Hydrogen Plasma Treatment on the Physical and Chemical Properties of Tin Oxide Thin Films for Ambipolar Thin-Film Transistor Applications.” Ceramics International, vol. 48, no. 17, Sept. 2022, pp. 24540–24549, www.sciencedirect.com/science/article/pii/S0272884222016546?via%3Dihub, https://doi.org/10.1016/j.ceramint.2022.05.097. Accessed 25 Mar. 2025.
    [5] Yang, Jianwen, et al. “Amorphous Nickel Incorporated Tin Oxide Thin Film Transistors.” Journal of Physics D Applied Physics, vol. 50, no. 35, 28 June 2017, pp. 355103–355103, https://doi.org/10.1088/1361-6463/aa7c53. Accessed 25 Mar. 2025.
    [6] Chen, Xuanhu, et al. “Gallium Oxide-Based Solar-Blind Ultraviolet Photodetectors.” Semiconductor Science and Technology, vol. 35, no. 2, 17 Jan. 2020, pp. 023001–023001, https://doi.org/10.1088/1361-6641/ab6102. Accessed 8 Oct. 2023.
    [7] Hu, Gengtao, et al. “Solution Processed Amorphous Gallium-Incorporated Tin Oxide Thin-Film Transistors.” Japanese Journal of Applied Physics, vol. 59, no. 5, 13 Apr. 2020, pp. 050906–050906, https://doi.org/10.35848/1347-4065/ab88c0. Accessed 25 Mar. 2025.
    [8] Kang, Jiyeon, et al. “Migration of Indium Ions in Amorphous Indium–Gallium–Zinc-Oxide Thin Film Transistors.” Applied Surface Science, vol. 258, no. 8, 1 Dec. 2011, pp. 3509–3512, www.sciencedirect.com/science/article/pii/S0169433211018630?via%3Dihub, https://doi.org/10.1016/j.apsusc.2011.11.104.
    [9] Seo, Seok-Jun, et al. “Improved Negative Bias Illumination Instability of Sol-Gel Gallium Zinc Tin Oxide Thin Film Transistors.” Applied Physics Letters, vol. 99, no. 15, 10 Oct. 2011, pubs.aip.org/aip/apl/article/99/15/152102/341119/Improved-negative-bias-illumination-instability-of, https://doi.org/10.1063/1.3646388. Accessed 25 Mar. 2025.
    Chapter 2
    [1] Kirk S, Giboney. “IEEE Xplore Search Results.” Ieee.org, 2025, ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Publication%20Number%22:22&searchWithin=%22Volume%22:45&searchWithin=%22Issue%22:8&searchWithin=%22Start%20Page%22:1310. Accessed 26 Mar. 2025.
    [2] Selamneni, Venkatarao, and Parikshit Sahatiya. “Mixed Dimensional Transition Metal Dichalcogenides (TMDs) VdW Heterostructure Based Photodetectors: A Review.” Microelectronic Engineering, vol. 269, 17 Dec. 2022,p.111926, www.sciencedirect.com/science/article/abs/pii/S0167931722002209, https://doi.org/10.1016/j.mee.2022.111926.
    [3] Ohta, Hiromichi, and Hideo Hosono. “Transparent Oxide Optoelectronics.” Materials Today, vol. 7, no. 6, June 2004, pp. 42–51, https://doi.org/10.1016/s1369-7021(04)00288-3. Accessed 12 June 2022.
    [4] Lin, Wen-Kai, et al. “The Influence of Fabrication Process on Top-Gate Thin-Film Transistors.” Thin Solid Films, vol. 519, no. 15, 26 Jan.2011,pp.5126–5130, www.sciencedirect.com/science/article/pii/S0040609011002094?via%3Dihub, https://doi.org/10.1016/j.tsf.2011.01.159.
    [5] Stankus, Christopher, and Moinuddin Ahmed. “Comparing Smoothing Techniques for Extracting MOSFET Threshold Voltage.” Solid-State Electronics, vol. 164, Feb. 2020, p. 107744, https://doi.org/10.1016/j.sse.2019.107744. Accessed 2 Jan. 2022.
    [6] Kimura, Mutsumi, et al. “Extraction of Trap Densities at Front and Back Interfaces in Thin-Film Transistors.” Japanese Journal of Applied Physics, vol. 43, no. 1, 13 Jan. 2004, pp. 71–76, https://doi.org/10.1143/jjap.43.71. Accessed 10 Apr. 2025.
    [7] Matsuoka, Morito, and Shun-ichi Tohno. “Radio Frequency Electric-Mirror Sputtering Deposition.” Journal of Vacuum Science & Technology a Vacuum Surfaces and Films, vol. 13, no. 5, 1 Sept. 1995, pp. 2420–2426, pubs.aip.org/avs/jva/article/13/5/2420/456836/Radio-frequency-electric-mirror-sputtering, https://doi.org/10.1116/1.579483. Accessed 10 Apr. 2025.
    [8] Huai, Ying, et al. “Characteristic Study of an Atmospheric-Pressure Radio-Frequency Capacitive Argon/Nitrogen Plasma Discharge.” IEEE Transactions on Plasma Science, vol. 42, no. 6, June 2014, pp. 1648–1653, ieeexplore.ieee.org/document/6813668. Accessed 10 Apr. 2025.
    [9] ATTA, A A, et al. “Optical Characteristics of Transparent Samarium Oxide Thin Films Deposited by the Radio-Frequency Sputtering Technique.” Pramana, vol. 87, no. 5, 7 Oct. 2016, Accessed 10 Apr. 2025.
    [10] Beck, R.B., et al. “PECVD Formation of Ultrathin Silicon Nitride Layers for CMOS Technology.” Vacuum, vol. 70, no. 2-3, 31 Jan. 2003,pp.323–329, www.sciencedirect.com/science/article/pii/S0042207X02006656?via%3Dihub, https://doi.org/10.1016/S0042-207X(02)00665-6.
    Chapter 3
    [1] D.M., Priyadarshini, et al. “Effect of Annealing Ambient on SnO2 Thin Film Transistors.” Applied Surface Science, vol. 418, 30 Nov. 2016,pp.414–417, www.sciencedirect.com/science/article/pii/S0169433216326915?via%3Dihub, https://doi.org/10.1016/j.apsusc.2016.11.233.
    [2] Lounis, Zakia, et al. “Surface Stoichiometry Analysis by AES, EELS Spectroscopy and AFM Microscopy in UHV Atmosphere of SnO2 Thin Film.” Journal of Electron Spectroscopy and Related Phenomena, vol. 226, 23 Apr. 2018, pp. 9–16, www.sciencedirect.com/science/article/pii/S036820481730289X?via%3Dihub, https://doi.org/10.1016/j.elspec.2018.04.006.
    [3] Cao, Xiaoping, et al. “Structural Characterization of Pd-Doped SnO2 Thin Films Using XPS.” Surface and Interface Analysis, vol. 24, no. 9, 16 Sept. 1996, pp. 662–666, https://doi.org/10.1002/(sici)1096-9918(19960916)24:9%3C662::aid-sia155%3E3.0.co;2-c.
    Chapter 4
    [1] Fontana, Márcio, et al. “Photosensitivity Characterization of Nanostructured Tin Oxide Films and Alternative Photodetector Application.” IEEE Sensors Journal, vol. 11, no. 4, Apr. 2011, pp. 869–874, ieeexplore.ieee.org/document/5582140, https://doi.org/10.1109/jsen.2010.2068542. Accessed 11 Apr. 2025.
    [2] Li, Meiya, et al. “Radio Frequency Sputtered Zinc Oxide Thin Films with Application to Metal–Semiconductor–Metal Photodetectors.” Thin Solid Films, vol. 515, no. 18, June 2007, pp. 7357–7363, https://doi.org/10.1016/j.tsf.2007.03.026. Accessed 20 May 2022.
    [3] Zhou, Changqi, et al. “Ultraviolet Photodetectors Based on Wide Bandgap Oxide Semiconductor Films.” Chinese Physics B, vol. 28, no. 4, Apr. 2019, p. 048503, https://doi.org/10.1088/1674-1056/28/4/048503. Accessed 19 May 2022.
    [4] Qin, Yuan, et al. “Review of Deep Ultraviolet Photodetector Based on Gallium Oxide.” Chinese Physics B, vol. 28, no. 1, 1 Jan. 2019, pp. 018501–018501, https://doi.org/10.1088/1674-1056/28/1/018501. Accessed 27 Apr. 2023.
    [5] Liang, Huili, et al. “Recent Progress of Deep Ultraviolet Photodetectors Using Amorphous Gallium Oxide Thin Films.” Physica Status Solidi (A), vol. 218, no. 1, 14 Oct. 2020, p. 2000339, https://doi.org/10.1002/pssa.202000339.
    [6] Zhong, Mianzeng, et al. High-Performance Single Crystalline UV Photodetectors of β-Ga2O3. Vol. 619, 1 Jan. 2015, pp. 572–575, https://doi.org/10.1016/j.jallcom.2014.09.070. Accessed 17 June 2023.
    [7] Zhang, H., et al. “Trace Amount of Niobium Doped β-Ga2O3 Deep Ultraviolet Photodetector with Enhanced Photo-Response.” Optik, vol. 243, 2 June 2021, p. 167353, www.sciencedirect.com/science/article/pii/S0030402621009724?via%3Dihub, https://doi.org/10.1016/j.ijleo.2021.167353.
    [8] Young, Sheng-Joue, and Yi-Hsing Liu. “Ultraviolet Photodetectors with 2-D Indium-Doped ZnO Nanostructures.” IEEE Transactions on Electron Devices, 2016, pp. 1–5, ieeexplore.ieee.org/document/7506319, https://doi.org/10.1109/ted.2016.2582506. Accessed 11 Apr. 2025.
    [9] “Fabrication and Measurement of Cosputtered Indium Gallium Oxide Ultraviolet...: EBSCOhost.” Ebscohost.com, 2024, web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=b6a62d75-d935-4335-a75d-3d47c4fbbac2%40redis. Accessed 11 Apr. 2025.
    [10] Qu, Jiaqi, and Jun Chen. “Near-Infrared Photodetector Based on MoS2 QDs/GaAs Heterojunction with an Al2O3 Interface Passivation Layer.” Micro and Nanostructures, Apr. 2022, p. 207231, https://doi.org/10.1016/j.micrna.2022.207231. Accessed 30 Apr. 2022.
    [11] Li, Huixin, et al. “Flexible Ultraviolet Photodetector Based ZnO Film Sputtered on Paper.” Vacuum, vol. 172, 19 Nov. 2019, p. 109089, www.sciencedirect.com/science/article/pii/S0042207X19323437?via%3Dihub, https://doi.org/10.1016/j.vacuum.2019.109089.
    [12] Katayama, Haruyoshi, et al. “Measurement of Absorption and External Quantum Efficiency of an InAs/GaSb Type II Superlattice.” Infrared Physics & Technology, vol. 70, 31 Oct. 2014, pp. 53–57, www.sciencedirect.com/science/article/pii/S1350449514002369?via%3Dihub, https://doi.org/10.1016/j.infrared.2014.10.014.
    [13] Xing, Meijiao, et al. “High External Quantum Efficiency in ZnO/Au/Ga2O3 Sandwich–Structured Photodetector.” Applied Surface Science, vol. 618, May 2023, p. 156705, https://doi.org/10.1016/j.apsusc.2023.156705. Accessed 2 Apr. 2023.
    [14] Kin-Tak Lam, Artde Donald. “Time-Resolved Response Improvement of Oxygen-Doped A-In-Ga-Sn-O Metal-Semic...: EBSCOhost.” Ebscohost.com, 2024, web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=0&sid=fb79f90b-1613-4d80-95ad-3d7eb52becee%40redis. Accessed 11 Apr. 2025.
    Chapter 5
    [1] Ting-Hao Chang, et al. “Bandgap-Engineered in Indium–Gallium–Oxide Ultraviolet Phototransistors.” IEEE Photonics Technology Letters, vol. 27, no. 8, 15 Apr. 2015, pp. 915–918, https://doi.org/10.1109/lpt.2015.2400446. Accessed 22 Aug. 2022.
    [2] Xu, Xin, et al. “Amorphous Indium Tin Oxide Thin-Film Transistors Fabricated by Cosputtering Technique.” IEEE Transactions on Electron Devices, vol. 63, no. 3, 1 Mar. 2016, pp. 1072–1077, https://doi.org/10.1109/ted.2015.2513421. Accessed 2 Aug. 2024.
    [3] Kim, Dong‐Ho, et al. “Sputter‐Deposited Ga–Sn–Zn–O Thin Films for Transparent Thin Film Transistors.” Physica Status Solidi (A), vol. 208, no. 12, 31 Aug. 2011, pp. 2934–2938, https://doi.org/10.1002/pssa.201127213. Accessed 27 Jan. 2025.
    [4] Paine, David C., et al. “Amorphous IZO-Based Transparent Thin Film Transistors.” Thin Solid Films, vol. 516, no. 17, July 2008, pp. 5894–5898, https://doi.org/10.1016/j.tsf.2007.10.081. Accessed 29 Apr. 2022.
    [5] Chen, Shangxin, et al. “Analysis of Backlight White Spots on the TFT-LCD Screen and Improvement Countermeasures.” Optical Engineering, vol. 60, no. 08, 9 Aug. 2021, www.spiedigitallibrary.org/journals/optical-engineering/volume-60/issue-08/085105/Analysis-of-backlight-white-spots-on-the-TFT-LCD-screen/10.1117/1.OE.60.8.085105.full, https://doi.org/10.1117/1.oe.60.8.085105. Accessed 11 Apr. 2025.
    [6] Lu, Hsueh-Ping, et al. “Combination of Convolutional and Generative Adversarial Networks for Defect Image Demoiréing of Thin-Film Transistor Liquid-Crystal Display Image.” IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 3, 1 Aug. 2020, pp. 413–423, https://doi.org/10.1109/tsm.2020.3005164. Accessed 26 Aug. 2024.
    [7] Cao, Yuanzhi, et al. “High‐Resolution Monolithic Integrated Tribotronic InGaZnO Thin‐Film Transistor Array for Tactile Detection.” Advanced Functional Materials, vol. 30, no. 35, 9 July 2020, p. 2002613, https://doi.org/10.1002/adfm.202002613. Accessed 7 Feb. 2021.
    [8] Xue, Xianyang, et al. “Flexible Dual‐Parameter Sensor Array without Coupling Based on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors.” Advanced Materials Technologies, vol. 7, no. 3, 5 Oct. 2021, https://doi.org/10.1002/admt.202100849. Accessed 22 Apr. 2024.
    [9] Pintor-Monroy, Maria Isabel, et al. “Tuning Electrical Properties of Amorphous Ga2O3 Thin Films for Deep UV Phototransistors.” IEEE Sensors Journal, vol. 21, no. 13, 22 Apr. 2021, pp. 14807–14814, ieeexplore.ieee.org/document/9410280, https://doi.org/10.1109/jsen.2021.3074623. Accessed 11 Apr. 2025.
    [10] Woo, Kelly, et al. “From Wide to Ultrawide-Bandgap Semiconductors for High Power and High Frequency Electronic Devices.” Journal of Physics: Materials, 23 Jan. 2024, https://doi.org/10.1088/2515-7639/ad218b.
    [11] Goyal, Priyanshi, and Harsupreet Kaur. “Investigating Viability of Split-Stepped Gate Field Plate Design on Ga2O3 MOSFET for High Power Applications.” Journal of Electronic Materials, vol. 53, no. 8, 8 June 2024, pp. 4544–4552, https://doi.org/10.1007/s11664-024-11225-3. Accessed 11 Apr. 2025.
    [12] Chung, Sheng-Ti, et al. “Study on Metal-Oxide Field Effect Transistors of β-Gallium Oxide with AlGaO Spacer Layer Grown on Sapphire for High-Power Device Applications.” ACS Applied Electronic Materials, vol. 7, no. 7, 19 Mar. 2025, pp. 2767–2775, https://doi.org/10.1021/acsaelm.4c02230. Accessed 11 Apr. 2025.
    [13] Lin, Yung-Hao, and Ching-Ting Lee. “Stability of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors with Treatment Processes.” Journal of Electronic Materials, vol. 46, no. 2, 21 Oct. 2016, pp. 936–940, https://doi.org/10.1007/s11664-016-4851-4. Accessed 16 Apr. 2025.
    [14] .“Improvement of Self-Heating of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors Using Al2O3 Barrier Layer.” Journal of Electronic Materials, vol. 47, no. 2, 22 Nov. 2017, pp. 1467–1471, https://doi.org/10.1007/s11664-017-5946-2. Accessed 16 Apr. 2025.

    [15] Kim, Donggyu, et al. “Controllable Doping and Passivation of ZnO Thin Films by Surface Chemistry Modification to Design Low-Cost and High-Performance Thin Film Transistors.” Applied Surface Science, vol. 509, Apr. 2020, p. 145289, https://doi.org/10.1016/j.apsusc.2020.145289. Accessed 1 May 2022.
    [16] Ahn, Cheol Hyoun, et al. “Double-Layer Channel Structure Based ZnO Thin-Film Transistor Grown by Atomic Layer Deposition.” Physica Status Solidi (RRL) - Rapid Research Letters, vol. 8, no. 4, 7 Mar. 2014, pp. 328–331, https://doi.org/10.1002/pssr.201409044. Accessed 22 May 2019.
    [17] Cao, Fa, et al. “Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects.” Research, 23 Apr. 2024, https://doi.org/10.34133/research.0385.
    Chapter 6
    [1] Li, Yuanyuan V, et al. “Low-Voltage Double-Gate ZnO Thin-Film Transistor Circuits.” IEEE Electron Device Letters, vol. 34, no. 7, 12June2013,pp.891–893, https://doi.org/10.1109/led.2013.2263193. Accessed 1 Mar. 2025.
    [2] Hwang, Seong-Hyun, et al. “Effects of Al2O3 Surface Passivation on the Radiation Hardness of IGTO Thin Films for Thin-Film Transistor Applications.” Applied Surface Science, vol. 578, 1 Dec. 2021,p.152096, www.sciencedirect.com/science/article/pii/S0169433221031305?via%3Dihub, https://doi.org/10.1016/j.apsusc.2021.152096.

    無法下載圖示 校內:2030-07-24公開
    校外:2030-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE