| 研究生: |
姚恩平 Yao, En-Ping |
|---|---|
| 論文名稱: |
利用阻抗分析頻譜探討有機太陽能電池之特性 Characterizations on Organic Photovoltaics via Impedance Spectroscopy |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 有機太陽能電池 、阻抗分析頻譜 、等效電路模型 、載子傳輸層。 |
| 外文關鍵詞: | Organic photovoltaics, bulk heterojunction, interlayer, impedance spectroscopy, equivalent circuit model. |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們利用阻抗分析頻譜分析有機太陽能電池,藉由阻抗分析儀量測有機太陽能電池,並將所測得之阻抗訊號代入元件之等效模擬電路,透過等效電路中之電阻及電容等模擬元件之數值,分析有機太陽能電池中各層之物性及電性。
首先,本研究先針對近期較常被應用於高效率有機太陽能電池材料添加劑-1,8-二碘辛烷(1,8-diiodooctane, DIO)-對於有機太陽能電池元件中主動層電性之影響。透過阻抗分析儀可將主動層分析成一電阻與一電容之並聯電路,發現當DIO添加入主動層時,模擬出之電阻下降(CB:773.89526.46 Ω; DCB:671.65542.37 Ω)且電容上升(CB: 7.6914 nF; DCB: 9.3713.4 nF),並透過電阻及電容之變化可間接量化出有機施體材料與有機受體材料於主動層內之接面關係。此外,本項研究也發現透過阻抗分析儀模擬出之電阻與電容之乘積常數大小將直接關係到元件表現之優劣(6.29 μs 4.2 %; 7.27 μs 6.21 %)。本研究也透過不同主動層厚度驗證阻抗分析頻譜與等效電路之關係,並調變DIO於主動層內之濃度驗證施體材料與受體材料間之接面關係。
針對含DIO之有機太陽能電池中,本研究也進一步研究其主動層於熱效應上對於元件效率與主動層之分子排列形態之關係,發現熱效應只針對有添加DIO之主動層產生退化之效果,並藉由原子力顯微鏡量測其主動層分子排列形態之變化,再利用阻抗分析儀探討其主動層之分子排列形態與其模擬電阻與電容之關係,發現由於小分子因受熱而結晶,導致施體材料與受體材料之接面面積下降,因此主動層之電阻上升(540.48 692.81 Ω)而電容下降(17.4610.43 nF)。
由於本文利用雷射退火與熱退火有效改善有機太陽能電池之特性(從3.54%提升至4.01%),因此本研究也利用阻抗分析頻譜,以探討雷射退火與熱退火改變之物性變化與其施體材料與受體材料間之接面關係,發現未退火、單純熱退火與雷射及熱共退火之主動層電阻/電容分別為573.04 Ω / 25.07 nF、541.98 Ω / 31.48 nF與521.4 Ω / 34.75 nF,藉由模擬電阻與電容之變化進而推論元件分子排列之特性,並發現當施體材料與受體材料之接面固定時,有機材料本身之結晶將可決定元件之主要特性。
針對有機太陽能電池之效率增進,本文也利用摻雜有機磷光材料至主動層中,除了有效提升元件特性從(6.15%提升至7.08%),本研究也利用阻抗分析頻譜探討其摻雜與電性之關係,並發現較長之激子生命週期(67.28986.765 ps)確實提升元件之短路電流(10.4412.4 mA/cm2),且也對應到較高之模擬電阻電容乘積常數(35.0840.07 μs)。此部分也比較不同退火參數於摻雜有機磷光材料之主動層之影響,對於有機磷光材料於主動層內之變化與其對應之元件特性與模擬之電阻與電容之差異進行更深一層之探討。
最後,除了有機太陽能電池之主動層,本研究也利用阻抗分析儀探討主動層與電極接面之關係,發現接面能障越大(-1.10.30.7 eV),則接面電阻越大(42.1146.32193.21 Ω)且電容越小(1.582.563.67 nF)。此項研究成功建立出主動層與電極接面之能障變化與模擬電阻電容乘積常數之線性關係,並透過該關係間接定義出載子傳輸層於電極與主動層接面形成之有效功函數。本項研究也透過調變載子傳輸層厚度及表面粗糙度,發現當載子傳輸層表面粗糙度越小(7.967.6065.13 nm),接面面積相對越小而導致接面電阻上升(44.5147.7355.6962.88 Ω)而電容下降(16.514.2119.45 nF),以分析其接面模擬電阻與電容之變化。
對於有機太陽能電池之探討,物性之相關分析已乘載於許多文獻中,然而卻仍然有許多與其電性之連結尚未建立,而本論文之研究有效地利用電性的方式對有機太陽能電池進行探討,透過其模擬電路中之模擬元件可間接量化其施體材料與受體材料於主動層內之排列形態與相互關係,且可用以分析各種針對主動層變化之製程。此外,本研究也透過阻抗分析頻譜探討主動層與電極之接面關係,量化出其接面特性,著實為一快速有有效之分析方式。
This dissertation utilizes impedance spectroscopy (IS) to analyze organic photovoltaics (OPVs). The OPV devices are simply simulated to a circuit model, and the value of each element in the model is defined by fitting the impedance spectra. With the value of each element, the OPV device can be studied separately in terms of active layer part and interlayer part. We can derive more electrical information from the value of the separated elements which mainly corresponds to the physical difference from the active layer or the interlayer.
1, 8-Diiodooctane (DIO) has been known for its role of improving the polymer morphology and enhancing performance of polymer bulk heterojunction (BHJ) solar cell. First, the impedance spectroscopy was used to investigate the interface of poly(4,8-bis-alkyloxybenzo(1,2-b:4,5-b’)dithiophene-2,6-diyl-alt- (alkyl thieno(3,4-b) thiophene-2-carboxylate)-2,6-diyl) (PBDTTT-C):PC70BM in BHJ with DIO as additive. Based on our results, we were able to simulate the device into an equivalent circuit model, which allows us to conveniently analyze the organic/organic interfacial contact in the OPV device. Thus, we demonstrate that the impedance spectroscopy can an effective approach in characterizing the donor/acceptor interfaces, such that a direct correlation can be established between the morphology and the device performance of BHJ devices.
Besides, most photovoltaics operate at high temperature under sunlight. In this work, the thermal instability of DIO-based high-efficiency BHJ OPVs is studied. The BHJ layers were heated to various temperatures to investigate the changes in their physical properties using atomic force microscopy phase images. The mobilities of the carriers were characterized at various temperatures using the space-charge-limited current method, and the carrier lifetime was calculated by applying impedance spectroscopy to the simulated equivalent circuit of the OPV devices.
We also propose an approach for improving the performance of poly(3-hexylthiophen) (P3HT)-based OPVs. P3HT-based BHJ film can absorb the energy from 532-nm laser light and be transformed into favorable morphology. A combination of traditional thermal annealing and laser annealing improved device performance, with a slight increase in fill factor and a significant improvement in short-circuit current density. Better crystallization and a higher degree of molecular order in the thermal/laser co-annealed P3HT-based BHJ film were observed through X-ray diffraction and Raman spectroscopy. In this work, the BHJ layer was also analyzed via IS to investigate the interfacial property of donor and accepter materials. The simulated elements represent to the BHJ layer demonstrate different result from the DIO-based OPVs under annealing process.
To improve the OPV device performance, we also doped phosphorescent material tris(phenylpyrazole)iridium (Ir(ppz)3) into the BHJ layer of a P3HT and indene-C60 bisadduct (ICBA) blend to form more excitons at the triplet state. Triplet-state excitons have longer lifetimes than those of singlet-state excitons. Surface phase separation was determined via atomic force microscopy and the vertical distribution of various molecules was analyzed via secondary ion mass spectroscopy. Several annealing processes were applied to the BHJ layer doped with Ir(ppz)3 to investigate the thermal stability of the film. The exciton lifetime in the BHJ film was characterized using femtosecond time-reserved photoluminescence. The BHJ layer doping with Ir(ppz)3 was analyzed through IS as well. The variation on the elements which represent to the BHJ layer is different from the one as analyzed in previous works. The physical meanings on the Ir(ppz)3-doped BHJ film was well studied.
At last, we investigate the interface between the active layer and contacts in OPVs since the contact materials strongly affect the energy barrier at the interfaces. The interfacial characteristics are simply defined as a resistance-capacitance (R-C) shunt pair and extracted by fitting the impedance spectra to the equivalent circuit model. A change in the energy barrier is found to affect the values of R and C at the interface and the carrier transition time. In addition, the effect of electron buffer layer (TiO2) thickness on the interfacial characteristics is analyzed using impedance spectroscopy. The interfacial area between the hole buffer layer (MoO3) and the active layer affects the values of R and C at the interface.
We deliver a fast and simple way to investigate the OPV devices not only on BHJ layer but also on interfaces between BHJ layer and electrodes via IS. It is a method to combine the physical property and current density-voltage (J-V) characteristics of OPV devices together. By analyzing the OPV devices through IS, more unclear physical meanings in BHJ or interface between contact and BHJ layer are explainable.
[1] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett., vol. 48, pp. 183, 1986.
[2] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett., vol. 64, pp. 3422, 1994.
[3] P. Kumaresan, S. Vegiraju, Y. Ezhumalai, S. L. Yau, C. Kim, W.-H. Lee, and M.-C. Chen, “Fused-thiophene based materials for organic photovoltaics and dye-sensitized solar cells,” Polymers, vol. 6, pp. 2645-2669, 2014.
[4] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater., vol. 4, pp. 864-868, 2005.
[5] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater., vol. 15, pp. 1617-1622, 2005.
[6] G. Zhao, Y. He, and Y. Li, “6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization,” Adv. Mater., vol. 22, pp.4355-4358, 2010.
[7] J.-L. Wu, F.-C. Chen, M.-K. Chuang and K.-S. Tan, “Near-infrared laser-driven polymer photovoltaic devices and their biomedical applications,” Energy Environ. Sci., vol. 4, 3374-3378, 2011.
[8] T.-Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, and R. Gaudiana, “Highly efficient polycarbazole-based organic photovoltaic devices,” Appl. Phys. Lett., vol. 95, pp. 063334, 2009.
[9] G. Namkoong, J. Kong, M. Samson, I.-W. Hwang, and K. Lee, “Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells,” Org. Electron., vol. 14, pp. 74-79, 2013.
[10] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, and Yang Yang, “25th anniversary article: a decade of organic/polymeric photovoltaic research,” Adv. Mater., vol. 25, pp. 6642-6671, 2013.
[11] G. Li, R. Zhu and Y. Yang, “Polymer solar cells,” Nat. Photonics, vol. 6, pp. 153-161, 2012.
[12] Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics, vol. 6, pp. 591-595, 2012.
[13] X. Xia, G. Wei, S. Wang, J. D. Zimmerman, C. K. Renshaw, M. E. Thompson, and S. R. Forrest, “Small-molecule photovoltaics based on functionalized squaraine donor blends,” Adv. Mater., vol. 24, pp. 1956-1960, 2012.
[14] Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller, and S. B. Darling, “Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization,” J. Am. Chem. Soc., vol. 134, pp. 13616-13623, 2012.
[15] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. K?rner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, and P. Buerle, “Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance,” J. Am. Chem. Soc., vol. 134, pp. 11064-11067, 2012.
[16] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He , S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics, vol. 6, pp. 180-185, 2012.
[17] J. B. You , L. T. Dou , K. Yoshimura , T. Kato , K. Ohya , T. Moriarty , K. Emery , C.-C. Chen , J. Gao , G. Li , and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency,” Nat. Commun., vol. 4, pp. 1-10, 2013.
[18] http://www.heliatek.com/ (accessed Mar 2013).
[19] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett., vol. 85, pp. 5757, 2004.
[20] M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater., vol. 21, pp. 3019-3028, 2011.
[21] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, “"Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Adv. Funct. Mater., vol. 17, pp. 1636-1644, 2007.
[22] D. C. Graham, “The Electrical Double Layer and the Theory of Electrocapillarity,” Chem. Rev., vol. 41, pp. 441-501, 1947.
[23] P. Delahay, Double Layer and Electrode Kinetics, Wiley-Interscience, New York, 1965.
[24] D.M. Mohilner, Electroanalytical Chemistry, Dekker, New York, 1966, p.241.
[25] B. Breyer and H.H. Bauer, Alternating Current Polarography and Tensammetry, Chemical Analysis Series, Wiley-Interscience, New York, 1963.
[26] D.E. Smith, Electroanalytical Chemistry, Dekker, New York, Vol. 1, 1966, p. 1.
[27] A.M. Bond, Modern Polarographic Techniques in Analytical Chemistry, Dekker, New York, 1980.
[28] P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York, 1954.
[29] K.J. Vetter, Electrochemical Kinetics, Academic Press, New York, 1967.
[30] D.D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, New York, 1977.
[31] A.J. Bard and L.R. Faulkner, Electrochemical Methods, Wiley, New York, 1980.
[32] Instrumental Methods in Electrochemistry, Southampton Electrochemistry Group, Ellis Horwood, Chichester, 1985.
[33] E. Gileadi, Electrode Kinetics for Chemists, Engineers, and Material Scientists, VCH, New York, 1993.
[34] C.M.A. Brett and A.M. Oliveira Brett, Electrochemistry, Principles, Methods, and Applications, Oxford University Press, 1993.
[35] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1994.
[36] H.B. Oldham and J.C. Myland, Fundamentals of Electrochemical Science, Academic Press, San Diego, 1994.
[37] Physical Electrochemistry, Principles, Methods, and Applications, I. Rubinstein, Ed., Dekker, New York, 1995.
[38] J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, Wiley, New York, 1987.
[39] Z.B. Stoynov, B.M. Grafov, B.S. Savova-Stoynova, V.V. Elkin, and B.B. Damaskin, Electrochemical Impedance, Nauka, Moscow, 1991.
[40] R.D. Armstrong, M.F. Bell, and A.A. Metcalfe, H.R. Thirsk, Ed., The Chemical Society, Burlington House, London, 1978, Vol. 6, p. 98.
[41] W.I. Archer and R.D. Armstrong, H.R. Thirsk, Ed., The Chemical Society, Burlington House, London, 1980, Vol. 7, p. 157.
[42] D.D. Macdonald, Techniques for Characterization of Electrodes and Electrochemical Processes, Wiley & Sons, New York, 1991, p. 515.
[43] F. Mansfeld and W.J. Lorenz, Techniques for Characterization of Electrodes and Electrochemical Processes, Wiley & Sons, New York, 1991, p. 581.
[44] S. Szpak, Techniques for Characterization of Electrodes and Electrochemical Processes, Wiley & Sons, New York, 1991, p. 677.
[45] J.R. Scully, D.C. Silverman and M.W. Kendig, Electrochemical Impedance: Analysis and Interpretation, ASTM, Philadelphia, 1993.
[46] M. Sluyters-Rehbach and J.H. Sluyters, Analytical Chemistry, Marcel Dekker, 1970, Vol. 4, p. 1.
[47] M. Sluyters-Rehbach and J.H. Sluyters, Comprehensive Treatise of Electrochemistry, Plenum Press, Vol. 9, p. 177, 1984.
[48] D.D. Macdonald and M.C.H. McKurbe, Modern Aspects of Electrochemistry, Plenum Press, 1982, Vol. 14, p. 61.
[49] D.D. Macdonald and M.C.H. McKurbe, Electrochemical Corrosion Testing, ASTM Special Publ. 727, ASTM, Philadelphia, 1981.
[50] C. Gabrielli, Identification of Electrochemical Processes by Frequency Response Analysis, Solartron, Hampshire, 1984.
[51] C. Gabrielli, Use and Applications of Electrochemical Impedance Techniques, Solartron, Hampshire, 1990.
[52] T. Salim, L. H. Wong, B. Bräuer, R. Kukrej, Y. L. Foo, Z. Baod, and Y. M. Lam, “Solvent additives and their effects on blend morphologies of bulk heterojunctions,” J. Mater. Chem., vol. 21, pp.242-250, 2011.
[53] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater., vol. 22, pp. E135, 2010.
[54] S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks, and L. X. Chen, “Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells,” J. Am. Chem. Soc., vol. 133, pp. 20661-20663, 2011.
[55] A. J. Moulè and K. Meerholz, “Controlling morphology in polymer-fullerene mixtures,” Adv. Mater., vol. 20, pp. 240-245, 2008.
[56] F.-C. Chen, H.-C. Tseng, and C.-J. Ko, “Solvent mixtures for improving device efficiency of polymer photovoltaic devices,” Appl. Phys. Lett., vol. 92, pp. 103316, 2008.
[57] J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, and Y. Chen, “Small molecules based on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solution-processed organic solar cells,” J. Am. Chem. Soc., vol. 134, pp. 16345-16351, 2012.
[58] Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc., vol. 131, pp. 7792-7799, 2009.
[59] S. A. Hawks, F. Deledalle, J. Yao, D. G. Rebois, G. Li, J. Nelson, Y. Yang, T. Kirchartz, and J. R. Durrant, “Relating recombination, density of states, and device performance in an efficient polymer:fullerene organic solar cell blend,” Adv. Energy Mater., vol. 3, pp. 1201-1209, 2013.
[60] K. Hess, Advanced Theory of Semiconductor Devices, Wiley, New York, 2000.
[61] J. Bisquert, “Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells,” Phys. Chem. Chem. Phys., vol. 5, pp. 5360-5364, 2003.
[62] Y. Yao, J. Hou, Z. Xu, G. Li, and Y. Yang, “Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells,” Adv. Funct. Mater., vol. 18, pp. 1783-1789, 2008.
[63] C.-W. Chu, H. Yang, W-J Hou, J. S. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells,” Appl. Phys. Lett., vol. 92, pp.103306, 2008.
[64] G. Ren, E. Ahmed, and S. A. Jenekhe, “Non-fullerene acceptor-based bulk heterojunction polymer solar cells: Engineering the nanomorphology via processing additives,” Adv. Energy Mater., vol. 1, pp. 946-953, 2011.
[65] M. Al-lbrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett., vol. 86, pp. 201120, 2005.
[66] Greg Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications, Wiley, New York, 2012.
[67] M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends,” Appl. Phys. Lett., vol. 87, pp. 083506, 2005.
[68] Z. Li, H. C. Wong, Z. Huang, H. Zhong, C. H. Tan, W. C. Tsoi, J. S. Kim, J. R. Durrant, and J. T. Cabral, “Performance enhancement of fullerene-based solar cells by light processing,” Nat. Commun., vol. 4, pp. 2227, 2013.
[69] C. S. Ho, E-L. Huang, W. C. Hsu, C. S. Lee, Y. N. Lai, E. P. Yao, and C. W. Wang, “Thermal effect on polymer solar cells with active layer concentrations of 3–5 wt%,” Synth. Met., vol. 162, pp. 1164-1168, 2012.
[70] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys., vol. 98, pp. 043704, 2005.
[71] T. J. Prosa, M. J. Winokur, J. Moulton, P. Smith , and A. J. Heeger, “X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb,” Macromolecules, vol. 25, pp. 4364-4372, 1992.
[72] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Ingana¨s, R. Feidenhans’l, and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films,” Macromolecules, vol. 33, pp. 3120-3127, 2000.
[73] T. Erb, S. Raleva, U. Zhokhavets, G. Gobsch, B. Stuhn, M. Spode, and O. Ambacher, “Structural and optical properties of both pure poly(3-octylthiophene) (P3OT) and P3OT/fullerene films,” Thin Solid Films, vol. 450, pp. 97-100, 2004.
[74] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, and C. J. Brabec, ”Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cell,” Adv. Funct. Mater., vol. 15, pp. 1193-1196, 2005.
[75] C. Y. Yang, C. Soci, D. Moses, and A. J. Heeger, “Aligned rrP3HT film: Structural order and transport properties,” Synth. Met., vol. 155, pp. 639-642, 2005.
[76] K. Kanai, T. Miyazaki, H. Suzuki, M. Inaba, Y. Ouchi, and K. Seki, “Effect of annealing on the electronic structure of poly(3-hexylthiophene) thin film,” Phys. Chem. Chem. Phys., vol. 12, pp. 273-282, 2010.
[77] M. Cardona and G. Güntherodt, “Light Scattering in Solids VI,” Springer: Berlin/Heidelberg, vol. 68, pp. 73, 1991.
[78] Y. Gao, and J. K. Grey, “Resonance chemical imaging of polythiophene/fullerene photovoltaic thin films: mapping morphology-dependent aggregated and unaggregated C═C species,” J. Am. Chem. Soc., vol. 131, pp. 9654-9662, 2009.
[79] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell,” Appl. Phys. Lett., vol. 68, pp. 3120, 1996.
[80] M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Andersson, and O. Inganäs, “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Phys. Rev. B, vol. 61, pp. 12957-12963, 2000.
[81] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, and K. Müllen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Phys. Rev. B, vol. 59, pp. 15346-15351, 1999.
[82] T. Stübinger and W. Brütting, “Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells,” J. Appl. Phys., vol. 90, pp. 3632, 2001.
[83] D. E. Markov, E. Amsterdam, P. W. M. Blom, A. B. Sieval, J. C. Hummelen, “Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer,” J. Phys. Chem. A, vol. 109, 5266-5274, 2005.
[84] Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev., vol. 109, pp. 5868-5923, 2009.
[85] D. E. Markov, C. Tanase, P. W. M. Blom, and J. Wildeman, “Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylenevinylene) derivatives,” Phys. Rev. B, vol. 72, pp. 045217, 2005.
[86] Z. Wang and F. Zhang, “Effect of doping phosphorescent material and annealing treatment on the performance of polymer solar cells,” Int. J. Photoenergy, vol. 2013, pp. 273586, 2013.
[87] A. Tsuboyama, H. Iwawaki, M. Furugori , T. Mukide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, “Homoleptic cyclometalated iridium complexes with highly efficient Red Phosphorescence and application to organic light-emitting diode,” J. Am. Chem. Soc., vol. 125, pp. 12971-12979, 2003.
[88] J. Yu, J. Huang, H. Lin, and Y. Jiang, “Exciton diffusion length analysis of mixed donor materials in organic solar cells by doping with phosphorescent iridium complex,” J. Appl. Phys., vol. 108, pp. 113111, 2010.
[89] B. P. Rand, S. Schols, D. Cheyns, H. Gommans, C. Girotto, J. Genoe, P. Heremans, J. Poortmans, “Organic solar cells with sensitized phosphorescent absorbing layers,” Org. Electron., vol. 10, pp. 1015-1019, 2009.
[90] G. Winroth, D. Podobinski, and F. Cacialli, “Dopant optimization for triplet harvesting in polymer photovoltaics,” J. Appl. Phys., vol. 110, pp.1015, 2011.
[91] S. H. Chang, C.-H. Chiang, H.-M. Cheng, C.-Y. Tai, and C.-G. Wu, “Broadband charge transfer dynamics in P3HT:PCBM blended film,” Opt. Lett., vol. 38, pp. 5342-5345, 2013.
[92] Y. Xie, Y. Li, L. Xiao, Q. Qiao, R. Dhakal, Z. Zhang, Q. Gong, D. Galipeau, and X. Yan, “Femtosecond Time-Resolved Fluorescence Study of P3HT/PCBM Blend Films,” J. Phys. Chem. C, vol. 114, pp. 14590-14600, 2010.
[93] H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.-F. Song, and H.-B. Sun, “Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,” Nanoscale, vol. 3, pp. 2280-2285, 2011.
[94] C. J. Brabec, “Organic photovoltaics: technology and market,” Sol. Energy Mater. Sol. Cells, vol. 83, pp. 273-293, 2004.
[95] V. D. Mihailetchi, L. J. A. Koster, and P. W. M. Blom, “Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells,” Appl. Phys. Lett., vol. 85, pp. 970, 2004.
[96] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells,” J. Appl. Phys., vol. 94, pp. 6849, 2003.
[97] S. Murase and Y. Yang, “Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method,” Adv. Mater., vol. 24, 2459-2462, 2012.
[98] L. Cattin, J. C. Bernède, Y. Lare, S. Dabos-Seignon, N. Stephant, M. Morsli, P. P. Zamora, F. R. Diaz, and M. A. del Valle, “Improved performance of organic solar cells by growth optimization of MoO3/CuI double-anode buffer,” Phys. Status Solidi A-Appl. Mat., vol. 210, pp. 802-808, 2013.
[99] V. Shrotriya, G. Li, Y. Yao, C. -W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett., vol. 88, pp. 073508, 2006.
[100] K. Zilberberg, S. Trost, H. Schmidt, and T. Riedl, “Solution processed vanadium pentoxide as charge extraction layer for organic solar cells,” Adv. Energy Mater., vol. 1, pp. 377-381, 2011.
[101] C. -P. Chen, Y. -D. Chen, and S. -C. Chuang, “High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer,” Adv. Mater., vol. 23, pp. 3859-3863, 2011.
[102] I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extractin layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C, vol. 117, pp. 49-57, 2013.
[103] C. -S. Ho, W. -C. Hsu, Y. -N. Lai, C. -S. Lee, W. -M. Chen, E -L. Huang, E. -P. Yao, and C. -W. Wang, “Performance improvement in poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester polymer solar cell by doping wide-gap material tris(phenylpyrazole)iridium,” Appl. Phys. Express, vol. 6, pp. 042301, 2013.
[104] S. -H. Lee, J.-H. Kim, T. -H. Shim, and J. -G. Park, “Effect of interface thickness on power conversion efficiency of polymer photovoltaic cells,” Electron. Mater. Lett., vol. 5, pp. 47-50, 2009.
[105] B. Jonathan, D. Servaites, S. Yeganeh, T. J. Marks, and M. A. Ratner, “Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance,” Adv. Funct. Mater., vol. 20, pp. 97-104, 2010.
[106] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer,” Adv. Mater., vol. 23, pp. 1679-1683, 2011.
[107] J. -C. Wang, W. -T. Weng, M. -Y. Tsai, M. -K. Lee, S. -F. Horng, T. -P. Perng, C. -C. Kei, C. -C. Yu, and H. F. Meng, “Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer,” J. Mater. Chem., vol. 20, pp. 862-866, 2010.
[108] J. You, C. -C. Chen, L. Dou, S. Murase, H. -S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, and Y. Yang, “Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells,” Adv. Mater., vol. 24, pp. 5267-5272, 2012.
[109] C. -C. Chen, L. Dou, R. Zhu, C. -H. Chung, T. -B. Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss, and Y. Yang, “Visibly transparent polymer solar cells produced by solution processing,” ACS Nano, vol. 8, pp. 7185-7190, 2012.
[110] M. S. White, D. C. Olson, N. Kopidakis, A. M. Nardes, D. S. Ginley, and J. J. Berry, “Control of charge separation by electric field manipulation in polymer-oxide hybrid organic photovoltaic bilayer devices,” Phys. Status Solidi A-Appl. Mat., vol. 207, pp. 1257-1265, 2010.
[111] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics, vol. 6, pp. 591-595, 2012.
[112] K. Uehara, Y. Yokota, H. Hirabayashi, and S. Yoshikawa, “Novel approaches to an efficient organic photovoltaic solar cell using nano-controlling technology in bacterial photosynthesis,” Sustainable Energy and Environment (SEE 2006), B-042 (O) 2006.
[113] S. K. M. Jonsson, E. Carlegrim, F. Zhang, W. R. Salaneck, and M. Fahlman, “Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: the role of LiF,” Jpn. J. Appl. Phys., vol. 44, pp. 3695-3701, 2005.
[114] M. T. Greiner and Z. H. Lu, “Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces,” NPG Asia Mater., vol. 5, pp. e55, 2013.
[115] B. J. Leever, C. A. Bailey, T. J. Marks, M. C. Hersam, and M. F. Durstock, “In situ characterization of lifetime and morphology in operating bulk heterojunction organic photovoltaic devices by impedance spectroscopy,” Adv. Energy Mater., vol. 2, pp. 120-128, 2012.
[116] B. Yang, Y. Yuan, and J. Huang, “Reduced bimolecular charge recombination loss in thermally annealed bilayer heterojunction photovoltaic devices with large external quantum efficiency and fill factor,” J. Phys. Chem. C, vol. 118, pp. 5196-5202, 2014.
[117] G. Garcia-Belmonte, A. Guerrero, and J. Bisquert, “Elucidating operating modes of bulk-heterojunction solar cells from impedance spectroscopy analysis,” J. Phys. Chem. C, vol. 4, pp. 877-886, 2013.
[118] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett., vol. 80, pp. 1288, 2002.
[119] E. P. Yao, C. C. Chen , J. Gao, Y. Liu, Q. Chen, M. Cai, W. C. Hsu, Z. Hong, G. Li, and Y. Yang, "The study of solvent additive effects in efficient polymer photovoltaics via impedance spectroscopy," Sol. Energy Mater. Sol. Cells, vol. 130, pp. 20-26, 2014.
[120] E. P. Yao, Y. J. Tsai, W. C. Hsu, “Investigation of thermal instability of additive-based high-efficiency organic photovoltaics,” Int. J. Photoenergy, vol. 2014, pp. 952528, 2014.
[121] E. P. Yao, C. S. Ho, C. Yu, E L. Huang, Y. N. Lai, W. C. Hsu, "An alternative approach for improving performance of organic photovoltaics by light-enhanced annealing," Int. J. Photoenergy, vol. 2014, pp. 120693, 2014.
[122] E. P. Yao, Y. J. Tsai, W. C. Hsu, "An investigation of organic photovoltaics improvement via extension of exciton lifetime," Phys. Chem. Chem. Phys, vol. 17, pp. 5826-5831, 2015.
[123] E. P. Yao, S. M. Shiu, Y. J. Tsai, Y. S. Lin, W. C. Hsu, "Characterization of interfaces between contacts and active layer in organic photovoltaics using impedance spectroscopy and equivalent circuit model," IEEE J. Photovolt., vol. 5, pp. 903-911, 2015.