簡易檢索 / 詳目顯示

研究生: 李嘉峻
Lee, Chia-Chun
論文名稱: 峰值電流控制模式昇降壓發光二極體驅動電路之小信號模型建構與分析
Small-Signal Modeling and Analysis of Peak Current-Mode Buck-Boost LED Driver
指導教授: 林瑞禮
Lin, Ray-Lee
李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 140
中文關鍵詞: 連續導通模式非連續導通模式昇降壓轉換器發光二極體系統模型峰值電流控制
外文關鍵詞: Continuous-conduction-mode, Discontinuous-conduction-mode, Buck-Boost converter, Light-emitting-diode, System modeling, Peak current-mode control
相關次數: 點閱:135下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別提出連續導通模式及非連續導通模式之昇降壓型發光二極體驅動器的系統模型,俾以脈衝寬度開關及電流模式控制模型建構小信號等效電路,藉此推導各系統轉移函數。其中,包括控制對輸出電流、輸入對輸出電流及輸出阻抗轉移函數。為更精確地描述發光二極體的電壓對電流特性,以泰勒級數表示發光二極體的指數特性,並且建構發光二極體直流與小信號等效電路,以利於發光二極體驅動器之系統特性分析。為了探討溫度效應對發光二極體等效模型之影響,可藉由發光二極體的電壓對電流指數方程式分析溫度與發光二極體電壓電流曲線的關係。
    藉由推導及驗證連續導通模式及非連續導通模式之昇降壓型發光二極體驅動器的開迴路轉移函數,使用Mathcad®運算軟體及電路模擬軟體SIMPLIS®輔以分析系統特性及設計閉迴路系統之補償器。
    最後,由SIMPLIS®電路模擬與實驗結果驗證本論文所提出之連續導通模式及非連續導通模式昇降壓型發光二極體驅動器的系統模型及推導各系統轉移函數。

    This thesis presents the modeling of the peak current-mode buck-boost light-emitting-diodes (LEDs) driver in the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM), respectively. In order to analyze system characteristics, the equivalent circuits can be constructed with the pulse-width modulation (PWM) switch cells and the current-mode control schemes, to derive the system transfer functions, including control-to-output current gain, line-to-output current gain and output impedance. The derivation of the system transfer functions for the CCM and the DCM buck-boost LED driver, the system characteristic analysis and the compensator design are developed by Mathcad® to compare with the SIMPLIS® simulations.
    In order to precisely curve-fit the V-I characteristic curve of the LEDs, the exponential function of the V-I characteristic can be expressed by Taylor series. The DC and the small-signal equivalent circuit models of the LEDs have been constructed to describe the V-I characteristic of the LEDs. In order to realize the temperature effect on the LEDs model, the exponential function for describing the characteristics of the LEDs is used to analyze the relationship between the ambient temperature and the LEDs V-I curve.
    Finally the derived CCM and DCM system transfer functions are validated with the SIMPLIS® simulation and experimental results.

    Chapter 1. INTRODUCTION 1 1.1. BACKGROUND 1 1.2. MOTIVATION 8 1.3. THESIS OUTLINE 9 Chapter 2. EQUIVALENT CIRCUIT MODELS OF LEDS 10 2.1. INTRODUCTION 10 2.2. CONVENTIONAL APPROXIMATE LINEAR MODEL 11 2.3. PROPOSED TAYLOR SERIES EXPRESSION OF LED CHARACTERIZATION 12 2.4. PROPOSED DC AND SMALL-SIGNAL MODELS OF LED 14 2.5. PROPOSED DC AND SMALL-SIGNAL MODELS OF LED ARRAYS 17 2.6. TEMPERATURE EFFECT ON EQUIVALENT CIRCUIT MODELS OF LED 22 2.7. EXPERIMENTAL RESULTS 24 2.8. SUMMARY 25 Chapter 3. MODELING FOR PEAK CURRENT-MODE CCM BUCK-BOOST LED DRIVER 26 3.1. INTRODUCTION 26 3.2. MODELING OF OUTER-LOOP CCM BUCK-BOOST LED DRIVER 27 3.2.1. CCM Equivalent Circuit Models of PWM Switch Cell 28 3.2.2. DC Analysis 30 3.2.3. Control-to-Output Current Gain 31 3.2.4. Line-to-Output Current Gain 34 3.2.5. Output Impedance 37 3.3. MODELING OF DUAL-LOOP CCM BUCK-BOOST LED DRIVER 39 3.3.1. CCM Small-Signal Model of Current-Mode Control Cell 40 3.3.2. Control-to-Output Current Gain 41 3.3.3. Line-to-Output Current Gain 44 3.3.4. Output Impedance 47 3.3.5. Compensator Design 50 3.4. MODELING OF CLOSED-LOOP CCM BUCK-BOOST LED DRIVER 52 3.4.1. Control-to-Output Current Gain 53 3.4.2. Line-to-Output Current Gain 55 3.4.3. Output Impedance 57 3.5. EXPERIMENTAL RESULTS 59 3.6. SUMMARY 67 Chapter 4. MODELING FOR PEAK CURRENT-MODE DCM BUCK-BOOST LED DRIVER 68 4.1. INTRODUCTION 68 4.2. MODELING OF OUTER-LOOP DCM BUCK-BOOST LED DRIVER 69 4.2.1. DCM Equivalent Circuit Models of PWM Switch Cell 71 4.2.2. DC Analysis 73 4.2.3. Control-to-Output Current Gain 74 4.2.4. Line-to-Output Current Gain 76 4.2.5. Output Impedance 78 4.3. MODELING OF DUAL-LOOP DCM BUCK-BOOST LED DRIVER 80 4.3.1. DCM Small-Signal model of Current-Mode Control Cell 81 4.3.2. Control-to-Output Current Gain 82 4.3.3. Line-to-Output Current Gain 84 4.3.4. Output Impedance 86 4.4. MODELING OF CLOSED-LOOP DCM BUCK-BOOST LED DRIVER 88 4.4.1. Control-to-Output Current Gain 89 4.4.2. Line-to-Output Current Gain 91 4.4.3. Output Impedance 93 4.5. EXPERIMENTAL RESULTS 94 4.6. SUMMARY 101 Chapter 5. CONCLUSIONS AND FUTURE WORKS 102 REFERENCES 104 APPENDIX A. MATHCAD® CALCULATION PROGRAMS 107 A.1. Calculation for Equivalent Transcondutance of LED 107 A.2. Transfer Functions of Outer-Loop CCM Buck-Boost LED Driver 107 A.3. Transfer Functions of Dual-Loop CCM Buck-Boost LED Driver 108 A.4. Transfer Functions of Closed-Loop CCM Buck-Boost LED Driver 110 A.5. Transfer Functions of Outer-Loop DCM Buck-Boost LED Driver 111 A.6. Transfer Functions of Dual-Loop DCM Buck-Boost LED Driver 112 A.7. Transfer Functions of Closed-Loop DCM Buck-Boost LED Driver 113 APPENDIX B. SIMPLIS® SIMULATION SCHEMATICS 115 B.1. SIMULATION SCHEMATICS OF CCM BUCK-BOOST LED DRIVER 115 B.2. SIMULATION SCHEMATICS OF DCM BUCK-BOOST LED DRIVER 124 APPENDIX C. EXPERIMENTAL SCHEMATICS 133 APPENDIX D. PHOTOGRAPH OF PROTOTYPE CIRCUIT 135 APPENDIX E. OPTIMAL DESIGN OF LED ARRAY PERMUTATIONS 136 E.1. Optimal Design for CCM Buck-Boost LED Driver 136 E.2. Optimal Design for DCM Buck-Boost LED Driver 138 VITA 140

    [1] H. J. Chiu and S. J. Cheng, “LED backlight driving system for large-scale LCD panels,” IEEE Trans. Industrial Electronics, vol. 54, no. 5, pp. 2751-2760, Aug. 2007.
    [2] Hino and K. Iwamoto, “LED pulse response analysis considering the distributed CR constant in the peripheral junction,” IEEE Trans. Electronics Devices, vol. 26, no. 8, pp. 1238-1242, Aug. 1979.
    [3] S. D. Lester, M. J. Ludowise, K. P. Killeenm, B. H. Perez, J. N. Miller, and S. J. Rosner, “High-efficiency InGaN MQW blue and green LEDs,” Journal Cryst. Growth, vol. 190, no. 2, pp. 786-789, Jun. 1998.
    [4] H. J. Chiu, Y. K. Lo, T. P. Lee, S. C. Mou, and H. M. Huang, “Design of an RGB backlight circuit for liquid crystal display panels,” IEEE Trans. Industrial Electronics, vol. 56, no. 7, pp. 2793-2795, Jul. 2009.
    [5] E. Fred Schubert, Light-Emitting Diodes, Cambridge University Press, Inc., 2003.
    [6] Ray-Lee Lin and Yi-Fan Chen, “Equivalent circuit model of light-emitting-diode for system analysis of lighting drivers,” IEEE Conference on IAS Annual Meeting, pp. 1-5, Oct. 2009.
    [7] A. Bhattacharya, B. Lehman, A. Shteynberg, and H. Rodriguez, “A probabilistic approach of designing driving circuits for strings of high-brightness light emitting diodes,” Power Electronics Specialists Conference, pp. 1429-1435, Jun. 2007.
    [8] S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, “Performance degradation of high-brightness light emitting diodes under DC and pulsed,” IEEE Trans. Device Mater. Rel., vol. 8, no. 2, pp. 312-322, Jun. 2008.
    [9] S. C. Tan, “General n-level driving approach for improving electrical-to-optical energy-conversion efficiency of fast-response saturable lighting devices,” IEEE Trans. Industrial Electronics, vol. 57, no. 4, pp. 1342-1353, Apr. 2010.
    [10] S. D. Lester, M. J. Ludowise, K. P. Killeenm, B. H. Perez, J. N. Miller, and S. J. Rosner, “High-efficiency InGaN MQW blue and green LEDs,” Journal Cryst. Growth, vol. 189, no. 1, pp. 786-789, Jun. 1998.
    [11] V. Adivarahan, A. Chitnis, J. P. Zhang, M. Shatalov, J. W. Wang, G. Simin, and M. Asif, “Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells,” Appl. Phys. Lett., vol. 79, no. 25, pp. 4240-4242, Dec. 2001.
    [12] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting-diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, Mar. 1994.
    [13] Datasheets, “PART NO.: EOZ-ZBRHCDO-KK” EXCELLENCE OPTO. INC., 2007.
    [14] Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, Inc., 2004.
    [15] O’Neil Peter V., Advanced Engineering Mathematics, 5th Edition. CL-Engineering, 2002.
    [16] H. V. D. Broeck, G. Sauerlander, and M. Wendt, “Power driver topologies and control schemes for LEDs,” Applied Power Electronics Conference, pp. 1319-1325, Mar. 2007.
    [17] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part I: continuous conduction mode,” IEEE Trans. Power Electronics, vol. 26, no. 3, pp. 490-496, May 1990.
    [18] S. Y. Erich and W. M. Polivka, “Input filter design criteria for current-programmed regulators,” IEEE Trans. Power Electronics, vol. 7, no. 1, pp. 143-151, Jan. 1992.
    [19] C. R. Kohut, “Input filter design criteria for switching regulators using current-mode programming,” IEEE Trans. Power Electronics, vol. 7, no. 3, pp. 469-479, Jul. 1992.
    [20] R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. Power Electronics, vol. 6, no. 2, pp.271-280, Apr 1991.
    [21] Maniktala Sanjaya, Switching Power Supplies A to Z. Maryland Heights: Newnes, 2006.
    [22] Ray-Lee Lin and Yi-Fan Chen, “System analysis of CCM dual-loop controlled light-emitting-diode boost driver,” IEEE Conference on IAS Annual Meeting, pp. 1-6, Oct 2009.
    [23] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch part II: discontinuous conduction mode,” IEEE Trans. on Power Electronics, vol. 26, no. 3, pp. 497-505, May 1990.
    [24] R. B. Ridley, B. H. Cho, and F. C. Y. Lee, “Analysis and interpretation of loop gains of multiloop-controlled switching regulators,” IEEE Trans. Power Electronics, vol. 3, no. 4, pp. 489-498, Oct 1988.
    [25] Ray-Lee Lin, and Yi-Fan Chen, “System analysis of DCM Dual-loop controlled light-emitting-diode boost driver” IEEE Conference on IAS Annual Meeting, pp. 1-6, Oct. 2009.
    [26] Datasheets, “RT8450: High voltage multi-topology LED driver,” Richtek Technology Corporation, 2010.

    下載圖示 校內:2015-11-08公開
    校外:2015-11-08公開
    QR CODE