| 研究生: |
陳又慈 Chen, Yu-Tzu |
|---|---|
| 論文名稱: |
應用於監控系統上之即時人物追蹤、區分與異常行為偵測演算法 A Real-Time People Tracking, Discrimination and Abnormal Behavior Detection Algorithm for Surveillance Systems |
| 指導教授: |
戴顯權
Tai, Shen-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 監控系統 、追蹤 |
| 外文關鍵詞: | surveillance system, trackihng |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
公共場合的社會安全問題在現今愈變愈重要,人身安全的問題像是物品失竊或是遺失等,有時遺留的物品可能需要引起群眾疏散等危險警訊,因此如何偵測及預防此類的問題成為目前發展中的重要議題。在這篇論文提出了應用在開放空間的數位監控系統上之及時物件追蹤與區分系統,此系統能追蹤出現在監控畫面中的人和物,並且偵測異常行為。首先提出一個新的演算法來訓練出一張背景圖,並用背景和目前畫面間的色彩差異性來擷取出所感興趣的物件,再對這些物件運用中心點來比對出其在不同畫面中所出現的位置加以追蹤。因為畫面中通常有多個人同時存在,所以系統同時會觀察物件間的互動,是否有合併或是分離的現象,若有人群合併後再度分離,系統會對此種情況作判別以區分物件。最後,針對人身安全問題,系統對於失竊及遺留物品等異常情況作偵測,當此種異常狀況發生時,系統會送出警訊給監控者並加以記錄。此追蹤系統應用上述之演算法,能即時地追蹤出現的人物。
Recently, social security problem in the public place becomes more and more important, human security like stealing, losing and some dangerous actions which may need to cause evacuation. How to detect and prevent them is a significant issue. This Thesis proposes an automatic surveillance system for tracking objects and detecting abnormal situation in open space. Usually, the foreground regions will be determined by the trained background. Therefore, a new algorithm is first proposed to estimate background. Then, the system can track the interesting objects by matching method frame by frame. And it not only can track people, but also can discriminate people if they move away after move toward from each other. Finally, the system detects if any person behaves abnormal, such as stealing the object or leaving the bag in the scene. With above algorithms, the system can track people in real time.
[1] A. C. Davies, J. H. Yin, and S. A. Velastin, “Crowd monitoring using image processing,” IEE Electron. Commun. Eng. J., vol. 7, no. 1, pp. 37–47, 1995.
[2] A. Hampapur, L. Brown, J. Connell, M. Lu, H. Merkl, S. Pankanti, A.W. Senior, C. Shu, and Y-L Tian, “The IBM Smart Surveillance System. ” IEEE CVPR, Washington D.C., June 2004.
[3] A. Neri, S. Colonnese, G. Russo, and P. Talone, “Automatic moving object and background separation,” Signal Processing, vol. 66, no. 2, pp. 219–232, 1998.
[4] A. Senior, A. Hampapur, Y-L Tian, L. Brown, S. Pankanti, R. Bolle, “Appearance Models for Occlusion Handling, ” in proceedings of Second International workshop on Performance Evaluation of Tracking and Surveillance systems in conjunction with CVPR'01 December 2001.
[5] B.P.L. Lo and S.A. Velastin, “Automatic Congestion Detection System for Underground Platforms,” Proc. Int’l Symp. Intelligent Multimedia, Video, and Speech Processing, pp. 158-161, 2000.
[6] B. S. Manjunath, J-R Ohm, V. V. Vasudevan, and A. Yamada, "Color and Texture Descriptors," IEEE transaction on circuits and systems for video technology, vol. 11, NO. 6, JUNE 2001.
[7] C. Kim and J-N Hwang, “Fast and automatic video object segmentation and tracking for content-based applications,” IEEE transaction on circuits and systems for video technology, vol. 12, Feb. 2002.
[8] C. Stauffer, W. E. L. Grimson “Adaptive background mixture models for real-time tracking,” 1999. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2, June 1999.
[9] D. Beymer and K. Konolige, "Real-Time Tracking of Multiple People Using Stereo," Proc. IEEE Frame Rate Workshop, 1999.
[10] I. K. Sethi and R. Jain, “Finding trajectories of feature points in a monocular image sequence,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 56–73, Jan. 1987.
[11] I. Haritaoglu, David Harwood, and L. S. Davis, “W4:Real-time surveillance of people and their activities,” IEEE Trans. Pattern Analysis and Machine intelligence, 22(8):809–830, August 2000.
[12] J. F. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 679–698, Nov. 1986.
[13] L.M. Brown, “View Independent Vehicle/Person Classification,“ACM 2nd Int'l Workshop on Video Surveillance & Sensor Networks, Columbia University, New York City, NY, October 15-16, 2004.
[14] L. M. Fuentes and S. A. Velastin, “People tracking in surveillance applications,” presented at the 2nd IEEE Int.Workshop Performance Eval. Tracking Surveillance, Kauai, HI, 2001.
[15] L. Shapiro and G. Stockman, Computer Vision. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[16] M. Leo, T. D’Orazio, and P. Spagnolo, “Human activity recognition for automatic visual surveillance of wide areas,” Proceedings of the ACM 2nd international workshop on Video surveillance & sensor networks, New York, NY, USA, 2004, pp. 124 – 130.
[17] N. Amamoto and K. Matsumoto, “Obstruction Detector by Environmental Adaptive Background Image Updating,” In ERTICO, editor, 4th World Congress on Intelligent Transport Systems, No. 4, pp1-7, Berlin, Oct. 1997. Traffic Technology International.
[18] Q. Zhou and J.K. Aggarwal, “Tracking and Classifying Moving Objects from Video,” Proceedings of IEEE Int. Workshop on PETS, 2001.
[19] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume: 25, Issue: 10, Oct. 2003, pp1337--1342.
[20] R. Mech and M. Wollborn, “A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera,” Signal Processing, vol. 66, pp. 203–217, Apr. 1998.
[21] S. A. Velastin, A. C. Davies, J. H. Yin, M. A. Vicencio-Silva, R. E. Allsop, and A. Penn, “Analysis of crowd movements and densities in built-up environments using image processing,” in IEE Coll. Image Process. Transport Applicat., vol. 236, London, UK, 1993, pp. 8/1–8/6.
[22] S.A. Velastin, B.A. Boghossian, B.P.L. Lo, Jie Sun, and M.A. Vicencio-Silva, “PRISMATICA: toward ambient intelligence in public transport environments,” IEEE Transactions on Systems, Man and Cybernetics, Part A, Volume: 35, Issue: 1, pp. 164- 182, Jan. 2005.
[23] S.J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Tracking Groups of People,” Computer Vision and Image Understanding, vol. 80, no. 1, pp. 42-56, Oct. 2000.
[24] T. Horprasert, D. Harwood, and L. S. Davis, “A statistical approach for real-time robust background subtraction and shadow detection,” In IEEE ICCV’99 Frame-Rate Workshop, 1999.
[25] Y-L Tian and A. Hampapur, “Robust Salient Motion Detection with Complex Background for Real-time Video Surveillance,” IEEE Computer Society Workshop on Motion and Video Computing, Breckenridge, Colorado, January 5 and 6, 2005.
[26] Z. Zhang, “Token tracking in a cluttered scene,” INRIA, Sophia Antipolis, Rep. 2072, Oct. 1993.