| 研究生: |
蔡芳滿 Tsai, Fang-Man |
|---|---|
| 論文名稱: |
需求預測與定價策略之探討-以輕鋼架產業為例 A Study on the Relationship between Demand Forecast and Pricing Strategies:with an Example of Ceiling Company |
| 指導教授: |
林清河
Lin, Chin-ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 需求預測 、灰色預測 、定價策略 、價格彈性 |
| 外文關鍵詞: | Demand Forecast, Grey Prediction Model, Pricing strategy, Price elasticity |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
需求預測是企業運籌管理重要的一環,悠關企業資源規劃與分配,而定價策略除了直接影響企業獲利,更深層的意涵是產業趨勢、公司及同業競爭力、市場供需的綜效評估。本文以輕鋼架產業為例,探討需求預測與定價策略之關聯,以整體產業而言,期能給予原料趨勢預測及原料採購建議,對於個案公司,則希望透過銷售資訊,給予未來定價策略擬定的參考。
輕鋼架產業為金屬建材類,製造成本中最主要的佔比來自鋼鐵原料成本,故鋼鐵產業動態與輕鋼架市場息息相關,而建材類產品消長往往與營造景氣相連結,以台灣輕鋼架產業而言,年總產值約40~50億,市場總量不大,但卻是鋼鐵趨勢及營造景氣的縮影,值得一探窺究。
鋼鐵為國家邁向工業化發展之重要基礎工業,相關產業眾多,鋼鐵業發展帶動上下游產業,其中營建業是最傳統也是主要市場需求。然而,台灣上游煉鋼量不足,國內市場鋼鐵用量對外依存度高,下游市場需求變化大,價格波動快速且劇烈,對於鋼鐵加工業而言,經營難度可想而知。本文藉助灰色理論,對台灣鍍鋅鋼鐵表面需求量、市場行情價格進行預測,依量價關係,計算出台灣「鍍鋅鋼品需求量」及其「市場價格」間的價格彈性。接著再以個案公司之隔間輕鋼架進行「銷售量預測與實證」研究,企圖歸納出產業及個案公司不同的需求價格彈性,以做為定價策略參考依據。
研究結果顯示,證實灰色預測模式適用於鍍鋅鋼品需求預測及輕鋼架銷售預測上,且鍍鋅鋼品需求量準確度優於公會預測數據。在需求價格彈性的結果顯示,鍍鋅鋼品產業價格彈性較個案公司來的小,意即鍍鋅鋼品價格波動對於需求量變化相對不敏感。本研究成果不僅可做為鍍鋅鋼品產業價格趨勢預測參考,更能協助業者依據市場預測,進而擬定最佳化的定價策略,以提升經營績效。
Demand forecast is a significant process of enterprises management which is relevant to the planning and allocation of company recourses. Pricing strategy has direct influence on company profit , and moreover, it is concerned about the industry trend、competiveness of company and the demand of market. The thesis will focus ceiling suspension industry as an case study to discuss the relationship between demand forecast and pricing strategy. Thorough this research, it is expected to provide suggestion regarding material trend, material purchase and pricing strategy for the case company.
Ceiling suspension industry belongs to building material industry, and the main proportion of the production cost comes from the raw material cost of Steel, therefore the development of steel industry will affect the ceiling suspension industry obviously. In other words, the growth relations between building material and economical prosperity are highly closed. Even though the market size of ceiling suspension industry is just about 4-5 billion annually, it can be the outline of steel tread and construction development. The development of ceiling suspension industry is a topic deserves further study.
Steel industry is the important basic industry of economics development which can promote the development of the supply chain. The domain and original market of steel is construction industry. However, the supply of Steel in Taiwan is insufficient while the downstream firms depend on semi-production too much. The demands of the market vary from minute to minute which will cause the imbalance of supply and demand and then effect the steel industry development and economics orders accordingly. The research will proceed the prediction of the “demand of coated steel surface” and “market price” by the methodology of accounting, then induce the price elasticity between “demand of coated steel surface” and “market price”. The findings will apply to the research of “sales forecast & practical operation” of wall Frame in case company and then attempt to generalize the different price elasticity needed for case company and the industry. In further, the results can be reference when case company draws the price strategy.
The finding indicates that grey prediction model can apply on the demand forecast of coated steel and the sales forecast of wall frame. Grey prediction model is more precisely than the traditional prediction model (subjective prediction). The result of demand’s price elasticity proves that the price elasticity of coated steel industry is smaller than case company’s, which means demand variation has light effect on the price of casted steel. The research not only can provide reference for price forecast of coated steel industry, but also help company to make the most appropriate price strategy and then improve the management performance.
中文參考書目
吳漢雄、鄧聚龍、溫坤禮 (1996). 灰色分析入門. 臺北: 高立.
巫和懋、霍德明、熊秉元、胡春田(2000). 經濟學四版. 台北: 雙葉書廊.
春日井博,1988,「需求預測入門」:書泉。
張偉哲、陳朝光 (2000). 灰色系統理論與發展應用. 中華民國資訊學會通訊, 23-29.
張偉哲、溫坤禮、張延政 (2000). 灰關聯模型方法與應用. 台北: 高立.
許巧鶯、溫裕弘 (1997). 台灣地區國際航空客運量之預測-灰色預測模式之應用. 運輸計劃季刊, 525-556.
陳長煌 (2000). 灰色GM(1,1)模型在發電量與耗電量預測上之應用. 東南學報, 131-144.
陳慧君(2007),台灣不銹鋼品需求預測之研究,靜宜大學管理碩士在職專班碩士論文。
黃廷合、呂日新(2002),人力資源管理-理論與實務,台北:全華科技圖書公司。
黃泓智、林家玉、余清祥(2004),癌症醫療費用之推估:馬可夫鏈模型之應用,保險專刊,第20 卷第1 期,頁1-20。
黃家鏘(1986),台灣鋼鐵製品業需求結構預測-時間序列分析之應用,國立台灣大學商學研究所碩士論文。
黃耀輝(2002),台灣鋼結構產銷供應鍊之市場結構與需求行為分析之研究,國立高雄第一科技大學運輸與倉儲營運系碩士論文。
鄧聚龍 (2000). 灰色系統理論與應用. 台北: 高立.
Reference
Assael, Henry (1990), “Marketing Pricipal & Strategy”, 1st Edition, The Dryden Press.
Aviv, Y.and Pazgal, A.(2005), A Partially Observed Markov Decision Process for Dynamic Pricing, Management Sci, Vol. 51, No. 9, 1400-1416.
Bitran, G..,R. Caldentey, and S. Mondschein(1998), Coordinating Clearance Markdown Sales of Seasonal Products in Retail Chains, Operations research,Vol.46,No.5, 609—624.
Bitran, G.R.and S.V. Mondschein (1997), Periodic Pricing of Seasonal Products in Retailing, Management Sci, Vol.43, No.1, 64—79.
Burnetas, A.N. and G.E. Smith (2000), Adaptive Ordering and Pricing for Perishable Products, Operations Research, Vol.48, No.3,436—443.
Carvalho,A.X. and M.L. Puterman(2003),Dynamic Pricing and Learning over Short Time Horizons, Working paper, University of British Columbia, Vancouver, BC, Canada.
Chamber, J. C., S. K. Mullick and D. D. Smith (1971), How to Choose the Right Forecasting Technique, H.B.R.
Chang, P.C., Tsou, N.T., Yuan, B.J.C., and Huang C.C.(2002), Development trends in Taiwan’s opto-electronics industry, Technovation, Vol.22, 161-173.
David J. Reibstein and Hubert Gatignon, “Optimal Product Line Pricing: The Influence of Elasticities and Cross-Elasticities,” American Marketing Association, pp.259-267, 1984
Diyar, A. and A. Mehmet (2006), Grey prediction with rolling mechanism for electricity demand forecasting of Turkey, Energy Vol. 32, 1670-1675.
Dolan, J. R. and S. Hermann(1996), “Power Pricing -- How Managing Price Transforms the Bottom Line” , 1st Edition, Levithan Publishing Company.
Donald S. Remer and Craig Jorgens, “Ethylene Economics and Production Forecasting in a Changing Environment”, Engineering &Process Economics, Vol.3, lss.4, 267-278, Nov. 1978.
Douglas, C. M. and A. P. Elizabeth, Introduction To Linear Regression Analysis, Wiley Inter. Science,” New York, N. Y., 1992.
Feng, Y. and G. Gallego(1996), Perishable Asset Revenue Management withMarkovian Time Dependent Demand Intensities, Management Sci, Vol.46, No.7, 941-956.
Feng, Y. and G.. Gallego(1995), Optimal Starting Times for End-of-Season Sales and Optimal Stopping Times for Promotional Fares, Management Sci,Vol.41,No.8, 1371-1391.
Feng, Y.and B. Xiao (2000), Optimal Policies of Yield Management with Multiple Predetermined Prices, Management Sci. Vol. 48, No.5, 332-343.
Gallego, G. and G.J. van Ryzin(1994), Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons, Management Sci, Vol.40, No.8, 999-1020.
George, A. and R.J. Hyndman(2007), Modelling and forecasting Australian domestic tourism, Tourism Management, Vol.29, 19-31.
Hamadi, H.M and S.A. Soliman (2005), Long-term/mid-term electric load forecasting based on short-term correlation and annual growth, Electric Power Systems Research. Vol.74, 353–361.
Hsu, C.C.and C.Y. Chen (2003), Applications of improved grey prediction model for power demand forecasting, Energy Conversion and Management Vol. 44, 2241-2249.
Huan, J. S. and T. L. James, and P. W. Trefor, “Using Neural Networks to Predict Component Inspection Requirements for Aging Aircraft,” Computers Ind. Engng, Vol. 30, No. 2, 257-267, 1996.
Kotler & Armstrong,Principles of Marketing ,10th Edition,方世榮譯,2004,行銷學原理,東華書局,P.395。
Li, G.D., D., Yamaguchi and M., Nagai (2007), Application hybrid grey dynamic model to forecasting compensatory control, Engineering Computations:International Journal for Computer-Aided Engineering and Software, Vol. 24 No. 7, 699-711.
Lilien, Gary L. and Philip Kotler (1985), Marketing Decision Making: A Model-Building Approach, New York: Harper & Row.
Melih, S.C. and K. Gunner (2010), From potential forecast to foresight of Turkey’s renewable energy with Delphi approach, Energy, Vol.35, 1973-1980.
Nagle, Thomas T.(1987), Strategies and Tactics of Pricing, Englewood Cliffs, NJ: Prentice Hill.
Rafi Mohammed(2005), “The Art Of Pricing: How To Find The Hidden Profits To Grow Your Business” USA
Reibstein and Gatignon (1984), “Optimal Product Line Pricing: The Influence of Elasticities and Cross-Elasticities,” Journal of Marketing Research, Vol. 21 (August), 259-67.
Russell & Taylor (2001), “Operations Management” pp. 448-513.
Still, Richard R., Edward W. Coundiff and Norman A. P. Govoni, Sales Management, Prentice-Hal, 1988.
Thomas R. Wotruba and Edwin K. Simpson, Sales Management text & Cases, Second Edition, Pws-Kent, 1992.
校內:2013-09-08公開