| 研究生: |
梁智超 Liang, Chih–Chao |
|---|---|
| 論文名稱: |
(1-x)Mg4Nb2O9-xATiO3 (A=Sr、Ca) 微波介電材料之研究與應用 Research and Application of (1-x)Mg4Nb2O9-xATiO3 (A=Sr、Ca) Microwave Dielectric Material |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 陶瓷 、微波 |
| 外文關鍵詞: | Microwave, ceramic |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將討論介電陶瓷材料系統(1-x)Mg4Nb2O9-xATiO3 (A=Sr、Ca),藉由正負共振頻率溫度係數的互補,使其達到平衡。Mg4Nb2O9的微波特性為εr~12.9, Q × f ~210000GHz以及τ約-70.4 ppm/℃;SrTiO3為εr~205、Q × f ~4200GHz以及τ約+1700 ppm/℃、CaTiO3為εr~170、Q×f~3600GHz以及τ約+800 ppm/℃,調整x值使其頻率溫度飄移係數趨近於零。在0.6Mg4Nb2O9-0.4SrTiO3材料裡,可在1300oC時燒結且具有最佳介電特性;介電常數εr為21.2,品質因素Q×f~112000GHz(9.7GHz),共振頻率溫度係數τ為+1.6ppm/oC。在0.5Mg4Nb2O9-0.5CaTiO3材料裡,可在1275oC時燒結且具有最佳介電特性;介電常數εr為24.8,品質因素Q×f為82000GHz(9GHz),共振頻率溫度係數τ為-0.3ppm/oC。由於添加0.5wt%B2O3於0.6Mg4Nb2O9-0.4SrTiO3材料裡,即可在1200oC時燒結且具有最佳介電特性;介電常數εr為20.53,品質因素Q×f為96000GHz(9.9GHz),共振頻率溫度係數τ為+2.3ppm/oC。
最後,本論文以FR4、氧化鋁、自製基板0.6Mg4Nb2O9-0.4SrTiO3+0.5wt%B2O3,設計一中心頻率定為2GHz的帶通濾波器,再利用電腦模擬與實做量測結果比較。
The microstructures and microwave dielectric properties of the (1-x)Mg4Nb2O9-xATiO3 (A=Sr、Ca) ceramic system were investigated in this paper. To achieve a temperature-stable material, we studied a method of combing a positive-temperature-coefficient material with a negative one. Mg4Nb2O9 has the following dielectric properties : a dielectric constant of εr~12.9, a Q×f value ~ 210000GHz and a negative τ~ -70.4 ppm/℃. SrTiO3 possesses a dielectric constant of εr~205, a Q × f value ~4200GHz and a positive τ~ +1700ppm/℃.
CaTiO3 possesses a dielectric constant of εr~170, a Q × f value ~3600GHz and a positive τ~ +800ppm/℃.By appropriately adjusting x value in the (1-x)Mg4Nb2O9-xATiO3 (A=Sr、Ca) ceramic system, a zero value can be obtained. With x=0.4 and A=Sr, a dielectric constant
εr~21.2, a Q×f value ~ 112000GHz(at 9.7GHz) and a τ~ +1.6 ppm/℃ were obtained for 0.6Mg4Nb2O9-0.4SrTiO3 ceramics sintered at 1300℃ for 4h. With x=0.5 and A=Ca, a dielectric constant εr~24.8, a Q×f value ~ 82000GHz(at 9GHz) and a τ~ -0.3 ppm/℃ were obtained for 0.5Mg4Nb2O9-0.5CaTiO3 ceramics sintered at 1275℃ for 4h. It is found that 0.6Mg4Nb2O9-0.4SrTiO3 ceramics can be sintered at 1200℃ due to the liquid phase effect of B2O3 additions. At 1200℃, 0.6Mg4Nb2O9-0.4SrTiO3 ceramics with 0.5wt% B2O3 addition possesses a dielectric constant εr~20.53, a Q×f value ~ 96000GHz(at 9.9GHz) and a τ~ +2.3 ppm/℃.
Finally, we design and fabricate a band-pass filters with 2GHz center frequency on FR4、Al2O3、0.6Mg4Nb2O9-0.4SrTiO3+ 0.5wt%B2O3 substrate respectively. And we compared with the result of the simulation and measurement.
[1] Akinori KAN, Hirotaka OGAWA, Atsushi YOKOI and Hitoshi OHSATO1,“Low-Temperature Sintering and Microstructure of Mg4(Nb2-xVx)O9 MicrowaveDielectric Ceramic by V Substitution for Nb”, Jpn. J. Appl. Phys. Vol.42 (2003)pp.6154–6157
[2] Pai-hsuan SUN,Tetsuro NAKAMURA,Yue Jin SHAN,Yoshiyuki INAGUMA,1Mitsuru ITOH1 and Toshiki KITAMURA2 ,“Dielectric Behavior of(1-x)LaAlO3-xSrTiO3 Solid Solution System at Microwave Frequencies”,Jpn. J. Appl. Phys. Vol.37(1998)pp.5625-5629
[3] Cheng-Liang Huanga,*, Hui-Liang Chenb, Chen-Cher Wua , “Improved high Qvalue of CaTiO3–Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperaturecoefficient of resonant frequency ”, Materials Research Bulletin Vol.36 (2001)pp.1645–1652
[4] N. Kumada, K. Taki, N.Kinomura,“Single crystal structure refinement of amagnesium niobium oxide: Mg4Nb2O9”, materials research bulletin Vol.35(2000)
[5] S. J. Penn,“Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina”,J.Am.Ceram.Soc.,Vol.80(1997)pp.1885-1888
[6] T. Manabe, I. Yamaguchi. W.Kondo, S. Mizuta and T.Kumagai,“Topotaxy ofCorundum-Type Tetramagnesium Diniobate and Ditantalate Layers onRock-Salt-Type Magnesium OxideSubstrates”, J. Am. Ceram. Soc., Vol.82 (1999)pp.2061-2065
[7] D.C. Sun1, S. Senz, D. Hesse*,“Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions”, Journal of the European Ceramic Society Vol.26(2006)pp.3181–3190
[8] H. T. Ogawaa, A.K. Kana, “Crystal structure of corundum type Mg4(Nb2-xTax)O9microwave dielectric ceramics with low dielectric loss” , Journal of the European Ceramic Society Vol.23 (2003)pp.2485–2488
[9] David M. Pozar “Microwave Engineering”, Addison-Wesley,1998
[10] D. Kajfez,“Computed model field distribution for isolated dielectric resonators”, IEEE. Trans. Microwave Theory Tech., Vol.32(1984)pp.1609-1616
[11] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, (1979.)pp.189-202
[12] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, (1970)
[13] K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[14] J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phases-intering of jagged particles”,J. Am. Ceram. Soc., Vol.53(1970)pp.406-409
[15] W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., Vol.82(1978) pp.308
[16] R. M. German, Liquid phase sintering., New York: Plenum Press, (1985)
[17] J. H. Jean, and C. H. Lin,“Coarsening of tungsten particles in W-Ni-Fe allo-ys”, J. Mater.Sci., Vol.24(1989) pp.500-504
[18] L. A. Trinogga, Guo Kaizhou, I. C. Hunter, “Practical microstrip circuit design”,UK: Ellis Horwood,(1991)
[19] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House(1996)
[20] E. O. Hammerstard, in Proceedings of the european microwave conference., (1975) pp.268-272,.
[21] E. J. Denlinger,“Losses of microstrip lines”,IEEE. Trans. Microwave Theory Tech., Vol.28(1980)pp.513–522
[22] David M. Pozar, Microwave engineering., Reading: Addison-Wesley,(1998)
[23] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip”, IEEE. Trans. Microwave Theory Tech., Vol.16(1968)pp.342-350
[24] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters impedance-mattching,networks, and coupling structures”, New York: McGraw-Hill, (1980)
[25] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due toimpedance step and their compensations”,IEEE Trans. Microwave Theory Te-ch, Vol.20(1980) pp.573-578
[26] 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,(1998).
[27] R. L. Geiger, P. E. Allen, N.R.Strader, VLSI design techniques for analog and digital circuits., New York: McGraw-Hill,(1990)pp.674-685.
[28] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits”,McGraw-Hill, (1992)
[29] Lung-Hwa Hsieh, Kai Chang, “Narrowband High-Selectivity Active Bandpass Filters Using Open-Loop Multiple-Ring Resonators”, International Journal of RF and Microwave Computer-Aided Engineering Vol.15(2005)
[30] 'Xiuping Li, 'Jong-Gwan Yook, 'Jianjun Gao, kiaowen xu,“A Synthesized Method for Mmimum Insertion Loss Bandpass Filter Design”, Computational Electromagnetics and Its Applications, 2004. Proceedings. ICCEA 2004. 2004 3rd International Conference on Publicati(2004)
[31] Jia-Sheng Hong and Michael J.Lancaster, ‘‘Coupling of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters” IEEE Trans.Microwave Theory Tech., Vol.44(1996)pp.2099-2109.
[32] L. H. Hsieh, K. Chang, “Tunable Microwave Bandpass Filters With Two Transmission Zeros,” IEEE Trans. Microwave Theory Tech., Vol.51(2003) pp.520-525
校內:2058-07-15公開