簡易檢索 / 詳目顯示

研究生: 周明慶
Chou, Ming-Ching
論文名稱: 植基於非線性阻抗辨認之最大功率追蹤
Nonlinear Impedance Identification Based Maximum Power Point Tracking
指導教授: 林瑞禮
Lin, Ray-Lee
共同指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 169
中文關鍵詞: 太陽能模組最大功率追蹤脈衝寬度調變非線性阻抗電流模式
外文關鍵詞: Solar module, MPPT, PWM, maximum power point tracking, nonlinear impedance, current mode
相關次數: 點閱:142下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一適用於太陽能光電模組之全新的控制法則,俾使能在太陽光照強度與環境溫度皆發生變化的條件下,達成其最大功率追蹤之目的。本論文提出之控制法則乃運用電流擾動所產生的非線性電壓信號進行辨識與控制,可以藉由採用線性比較器與放大器搭配傳統的電流模式控制功率轉換器而達成。
    為能進行此最大功率追蹤轉換器的設計,一個與太陽能光電模組之傳統等效電路模型相符合,具分析解之數學模型必須先被導出,以取得相關於太陽能光電模組操作點之設計曲線。此外,一太陽能光電模組的樣品被測定,以取得其頻率相關的特性參數,用以建構一個完整的等效電路模型。藉由對此等效電路模型進行分析,可取得太陽能光電模組的小信號輸出阻抗曲線,進而掌握最大功率追蹤控制的頻率限制。
    此外,具有此最大功率追蹤功能之電源轉換器,可以藉由採用傳統電源轉換器之設計技術進行設計並以電路模擬驗證之。最後,雛型電路業經實驗測量其參數,進一步確認此轉換器雛型電路,確能在等效光照功率為300W/m2~1000W/m2 與 25ºC~50ºC環境溫度變化的條件下,達成最少95%之最大功率追蹤的效能。

    This thesis proposes a new control method to achieve the maximum power point(MPP) tracking (MPPT) with solar insolation changes and temperature variations flawlessly. This MPPT method is called “Nonlinear Impedance Identification Based Maximum Power Point Tracking”, which can be implemented by using an analog comparator and an amplifier with a conventional current mode controlled power converter.
    In order to design the proposed MPPT power converter, the mathematical model, which can be solved analytically, is derived in accordance with the conventional equivalent circuit model of the solar module. The design curves, which represent the operating points of the solar module, are obtained from the derived mathematical model and equations. Additionally, a solar module sample is characterized to obtain the frequency-dependent parameters for the completed equivalent circuit model. Based on the analysis results of the small-signal output impedance for the completed equivalent circuit model, the frequency limitation for the nonlinear impedance identification based MPPT has been found.
    Furthermore, the power converter used to demonstrate the MPPT performance is designed by applying the traditional power converter design techniques. The designed MPPT power converter is simulated to validate the achievements of the required functions. Finally, the prototype circuit is built to verify the MPPT performances with solar insolation changes and temperature variations. The test results show more than 95% of MPPT tracking rate with 25ºC~50ºC temperature range and 300W/M2~1000W/M2 solar insolation variations are achieved.

    CHAPTER 1 INTRODUCTION 1 1.1. BACKGROUND 1 1.2. MOTIVATION 9 1.3. THESIS OUTLINE 10 CHAPTER 2 CHARACTERISTICS OF SOLAR MODULE 12 2.1 INTRODUCTION 12 2.2. COMMERCIAL SOLAR MODULE AND RELATED DC MODELS 13 2.2.1. Specification of Solar Module 14 2.2.2. Conventional DC Equivalent Circuit Model of Solar Module 15 2.2.3. Conventional Mathematical Model of Solar Module 18 2.3. DC CHARACTERISTICS OF SOLAR MODULE 20 2.3.1. Solar Module with Different Electrical Parameters 21 2.3.2. Solar Module with Different Environmental Conditions 24 2.3.3 Observations for Different Environmental Conditions 27 2.4. OPERATIONAL REGIONS OF SOLAR MODULE 32 2.4.1. Voltage Source Region 32 2.4.2. Current Source Region 34 2.4.3. Maximum Power Point (MPP) Region 36 2.5. AC CHARACTERISTICS OF SOLAR MODULE 39 2.5.1 Solar Module with DC Biased Triangular-type Load current 39 2.5.2 Solar Module with Switching Circuits 43 2.5.3 Complete Equivalent Circuit Model of Solar Module 48 2.6. SUMMARY 51 CHAPTER 3 CHARACTERISTICS OF SOLAR MODULE AT MPP AND MPPT CONCEPT 52 3.1. INTRODUCTION 52 3.2. FREQUENCY DOMAIN CHARACTERISTICS OF MPP 53 3.2.1. Non-Resistive Output Impedance of Solar Module 53 3.2.2. Quasi-Resistive Output Impedance of Solar Module 55 3.3. SOLAR MODULE WITH DC-BIASED TRIANGULAR-TYPE LOAD CURRENT 57 3.3.1. Solar Module Operating as Voltage Source 57 3.3.2. Solar Module Operating as Current Source 59 3.3.3. Solar Module Operating at MPP Region 61 3.4. CONCEPT OF NONLINEAR IMPEDANCE IDENTIFICATION BASED MPPT CONTROL 63 3.5. FUNCTIONAL CIRCUIT STRUCTURE OF MPPT POWER CONVERTER 67 3.6. SUMMARY 68 CHAPTER 4 THEORETICAL VOLTAGE WAVEFORM OF SOLAR MODULE 69 4.1. INTRODUCTION 69 4.2. DERIVATION OF NEW MATHEMATICAL MODEL FOR SOLAR MODULE 71 4.2.1. Theoretical V-I Characteristic of Ideal Diode 71 4.2.2. Theoretical VPV-IPV Characteristic of Ideal Solar Module with Shunt Resistor 74 4.2.3. Theoretical VPV-IPV Characteristic of Ideal Solar Module with Shunt Resistor and Series Resistor 77 4.3. NONLINEAR FACTOR OF PHOTOVOLTAIC VOLTAGE WAVEFORM 80 4.3.1. IPV-VPV Characteristic of Solar Module and Average Output Voltage for Specified Output Current Range 80 4.3.2. Average Output Voltage for Specified Output Current Range 82 4.3.3. Nonlinear Factor of Photovoltaic Voltage Waveform with DC Biased Symmetrical Triangular-type Load Current 83 4.3.4. Nonlinear Factor of Photovoltaic Voltage Waveform with DC Biased Asymmetrical Triangular-type Load Current 87 4.4. CURVES OF NONLINEAR FACTORS 89 4.5. SUMMARY 92 CHAPTER 5 DESIGN OF MPPT POWER CONVERTER 93 5.1. INTRODUCTION 93 5.2. DESIGN OF POWER CONVERTER AND TRACKING CIRCUIT 94 5.2.1. Engineering Specifications of MPPT Power Converter 96 5.2.2. Design of Power Inductors 98 5.2.3. Parameter Design of Capacitors 103 5.2.4. Selection of Power Semiconductors 105 5.2.5. Parameter Design of PWM Control Circuit 106 5.2.6. Design of Non-Liner Impedance Identification Circuit 108 5.2.7. Design of Auxiliary Power Circuit 111 5.3. OPEN-LOOP CHARACTERISTICS OF MPPT POWER CONVERTER 113 5.3.1. COV Mode 113 5.3.2. MPPT Mode 117 5.4. COMPENSATOR DESIGN 120 5.4.1. Compensator Design for Voltage Loop 120 5.4.2. Compensator Design for MPPT Loop 124 5.5. SIMULATIONS OF CLOSED-LOOP CHARACTERISTICS 127 5.5.1. Closed-loop Characteristics of Voltage Loop 127 5.5.2. Closed- loop Characteristics of MPPT Loop 129 5.6. SUMMARY 130 CHAPTER 6 SIMULATION AND EXPERIMENTAL VERIFICATIONS 131 6.1. INTRODUCTION 131 6.2. IMPLEMENTATION AND TEST SETUP OF MPPT POWER CONVERTER 132 6.3. VOLTAGE MODE OPERATION OF DESIGNED MPPT POWER CONVERTER 134 6.4. MPPT MODE OPERATION OF DESIGNED MPPT POWER CONVERTER 135 6.4.1. Simulation of Designed MPPT Power Converter 135 6.4.2. Experimental Results of designed MPPT Power Converter 139 6.5. SUMMARY 146 CHAPTER 7 CONCLUSION AND FUTURE WORK 147 REFERENCES 158 APPENDIX A MEASURED PARAMETERS OF WS45G6P SOLAR MODULE 154 APPENDIX B. MEASURED WAVEFORMS OF WS45G6P SOLAR MODULE 155 APPENDIX C. MATHEMATICA® CALCULATION PROGRAMS 156 C.1. DERIVATION OF NEW MATHEMATICAL MODEL OF SOLAR MODULE 156 C.2. DERIVATION OF NONLINEAR FACTOR CURVES FOR EMPLOYED SOLAR MODULE 157 APPENDIX D. SIMPLIS® SIMULATION SCHEMATICS 159 D.1. COMPLETED EQUIVALENT CIRCUIT MODEL OF EMPLOYED SOLAR MODULE 159 D.2. SCHEMATICS OF MPPT POWER CONVERTER FOR OPEN LOOP SIMULATIONS 160 D.3. SCHEMATICS OF MPPT POWER CONVERTER FOR CLOSED-LOOP SIMULATIONS 161 APPENDIX E. SELECTED FERRITE CORE AND BOBBIN 164 APPENDIX F. MEASURED PARAMETERS OF PROTOTYPE CIRCUIT 165 F.1. MEASURED PARAMETERS OF EMPLOYED WS45G6P SOLAR MODULE WITH DIFFERENT LED LIGHT SOURCE POWER 165 F.2. MEASURED PARAMETERS OF EMPLOYED WS45G6P SOLAR MODULE WITH DIFFERENT LED LIGHT SOURCE POWER 167

    [1] Tatsuya Takamoto, “Status of Multijunction Solar Cells and Future Development,” in CS MANTECH Conference, May 18th-21st, 2009, Tampa, Florida, USA.
    [2] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
    [3] Y.-C. Kuo, T.-J. Liang, and J.-F. Chen, “Novel maximum-power-point tracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 594–601, Jun. 2001.
    [4] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song, and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” in Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., 2002, pp. 1531–1534.
    [5] Femia N., Petrone G., Spagnuolo G., and Vitelli M., “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963- 973, Jul. 2005.
    [6] Kasa, N., Iida, T., and Chen, L., “Flyback Inverter Controlled by Sensorless Current MPPT for Photovoltaic Power System,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1145–1152, Aug. 2005.
    [7] Youngseok Jung, Junghun So, Gwonjong Yu, and Jaeho Choi, “Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems,” in Proc. IEEE Photovoltaic Specialists Conf., Jun. 2005, pp. 1788-1791.
    [8] Jonathan W. Kimball, and Philip T. Krein, “Digital Ripple Correlation Control for Photovoltaic Applications,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 2007, pp. 1690-1694.
    [9] Jonathan W. Kimball, and Philip T. Krein, “Discrete-Time Ripple Correlation Control for Maximum Power Point Tracking,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2253 – 2362, Sep. 2008.
    [10] Fangrui Liu, and Shanxu Duan, Fei Liu, Bangyin Liu, Yong Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Trans. Industrial Electron., vol. 55, no. 7, pp. 2622 – 2628, Jul. 2008.
    [11] K.Kobayashi, I. Takano, andY. Sawada, “A study on a two stagemaximum power point tracking control of a photovoltaic system under partially shaded insolation conditions,” in IEEE Power Eng. Soc. Gen.Meet., 2003, pp. 2612–2617.
    [12] W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis, and I. Batarseh, “DSP-based multiple peak power tracking for expandable power system,” in 18th Annu. IEEE Appl. Power Electron. Conf. Expo., 2003, pp. 525–530.
    [13] Engin Karatepe, Takashi Hiyama, Mutlu Boztepe, and Metin Çolak, “Power Controller Design for Photovoltaic Generation System under Partially Shaded Insolation Conditions,” in Proc. 14th International Conference on Intelligent System Applications to Power Systems, Conf., 2007, pp. 57–62.
    [14] J. H. R. Enslin, and D. B. Snyman, “Simplified feed-forward control of the maximum power point in PV installations,” in Proc. 18th IEEE Annu. Industrial
    Electronics Conf. (IECON-’92), Nov. 1992, vol. 1, pp. 548-553.
    [15] S. M. M. Wolf, and J. H. R. Enslin, “Economical, PV maximum power point tracking regulator with simplistic controller,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 1993, pp.581-587.
    [16] J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, “Integrated photovoltaic maximum power point tracking converter,” IEEE Trans. Power Electron., vol. 44, no. 6, pp. 769 – 773, Dec. 1997.
    [17] C.-T. Pan, J.-Y. Chen, C.-P. Chu, and Y.-S. Huang, “A fast maximum power point tracker for photovoltaic power systems,” in Proc. 25th Annu. Conf. IEEE Ind. Electron. Soc., 1999, pp. 390–393.
    [18] K. K. Tse, H. S. H. Chung, S. Y. R. Hui, and M. T. Ho, “A novel maximum power point tracking technique for PV panels,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 2001, vol. 4, pp. 1970-1975.
    [19] K. K. Tse, M. T. Ho, H. S. H. Chung, and S. Y. Hui, “A novel maximum power point tracker for PV panels using switching frequency modulation,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 980-989, Nov. 2002.
    [20] H. S. H. Chung, K. K. Tse, S. Y. R. Hui, C. M. Mok, and M. T. Ho, “A novel maximum power point tracking technique for solar panels using a SEPIC or Cuk converter,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 717-724, May 2003.
    [21] K. K. Tse, B. M. T. Ho, H. S. H. Chung, and S. Y. R. Hui, “A comparative study of maximum-power-point trackers for photovoltaic panels using switching-frequency modulation scheme,” IEEE Trans. Industrial Electron., vol.
    51, no. 2, pp. 410-418, Apr. 2004.
    [22] B. M. T. Ho, H. S. H. Chung, and W. L. Lo, “Use of system oscillation to locate the MPP of PV panels,” IEEE Power Electronics Letters, vol. 2, no. 1, pp.1-5, Mar. 2004.
    [23] M. Matsui, T. Kitano, and Dehong Xu, “A simple maximum photovoltaic power tracking technique utilizing system inherent limit cycle phenomena,” in Conf. Rec. IEEE-IAS Annu. Meeting, Oct. 12–16, 2003, vol. 3, pp. 2041–2047.
    [24] N. D. Benavides, T. Esram, and P. L. Chapman, “Ripple Correlation Control of a Multiple-Input Dc-Dc Converter,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 2005, pp.160-164.
    [25] Eduardo Lorenzo, Solar Electricity: Engineering of Photovoltaic Systems. Progensa. ISBN 8486505550, 1994, pp. 78–89.
    [26] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering. Hoboken, NJ: Wiley, 2002, pp. 87–111.
    [27] Donald A. Neamen, Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill, 2003, pp. 284.
    [28] Bart Van Zeghbroeck, Principles of Semiconductor Devices. Colorado, CO: University of Colorado, 2007, Section 4.4.5,
    http://ece-www.colorado.edu/~bart/book/

    下載圖示 校內:2016-05-12公開
    校外:2016-05-12公開
    QR CODE