簡易檢索 / 詳目顯示

研究生: 廖士頤
Liao, Shih-Yi
論文名稱: 軟式切換濾波器於影像雜訊消除之研究
A study of Soft-Switching Filter on Image Denoising
指導教授: 王振興
Wang, Jeen-Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 影像雜訊消除濾波器脈衝雜訊
外文關鍵詞: image denoising, filter, impulse noise
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位影像在傳送或接收的過程中,常因傳輸通道使影像受到脈衝雜訊的干擾,進而破壞影像中原有的資訊。因此,如何有效的移除影像中的雜訊,便成為一個很重要的研究課題。本論文中提出一個基於軟式切換(soft-switching)技術的濾波器方法,針對受到脈衝雜訊干擾的影像進行改善。濾波器架構包含了雜訊點偵測與濾波處理兩個階段。首先利用齊性層(homogeneous level)的概念,將影像中的所有像素分類為雜訊點像素與非雜訊點像素。針對雜訊點像素的部分,使用模糊推論方法,進一步將其區分成孤立雜訊點(isolated noise)像素、非孤立雜訊點(non-isolated noise)像素與邊界(edge)像素三種類型。孤立雜訊點與非孤立雜訊點則分別以標準中間值濾波器與改良式Peak-and-Valley濾波器來改善;而非雜訊點與邊界的部分不屬於雜訊,所以不做任何處理。由實驗結果顯示,本文所提的軟式切換濾波器,不僅能夠有效的移除影像中的脈衝雜訊,同時也可以保護影像的邊界與細節部分。

    Digital images are often corrupted by impulse noise during image acquisition or transmission due to the interference of communication channels. How to efficiently remove the noise from the corrupted images has been an active research topic in the image processing community. In this thesis, a soft-switching technique has been developed to remove impulse noise from the corrupted image. The proposed method consists of two stages: noise detection and filtering. First, we use the concept of a homogeneous level to classify pixels into uncorrupted pixels and corrupted pixels. Then we further use a fuzzy technique to classify corrupted pixels into three categories: isolated impulse noise pixels, non-isolated impulse noise pixels and edge pixels. After finishing the noise detection step, we remove the isolated impulse noise and non-isolated impulse noise using a standard median filter and an improved Peak-and-Valley filter, respectively. The uncorrupted pixels and edge pixels are preserved without any modifications. According to our simulation results, the proposed scheme can suppress the impulse noise effectively and preserve the details and edges of images.

    中文摘要……………………………………………………………………………… i 英文摘要……………………………………………..………………………………. ii 目錄………………………………………………………………………………….. iii 表目錄………………………………………………………………………...……… v 圖目錄……………………………………………………………………………….. vi 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 研究方法 4 1.4 論文架構 5 第二章 影像復原理論 6 2.1 數位影像資料格式 6 2.2 影像退化與復原 7 2.3 影像雜訊介紹 9 2.3.1 脈衝雜訊 9 2.3.2 高斯雜訊 9 2.3.3 脈衝高斯混合雜訊 10 2.4 常見用來消除脈衝雜訊的濾波器 12 2.4.1 標準中間值濾波器 12 2.4.2 中心權重中間值濾波器 12 2.4.3 拉普拉斯運算子偵測 13 2.4.4 三態式中間值濾波器 15 2.4.5 SD-ROM濾波器 16 第三章 軟式切換濾波器設計 18 3.1 前言 18 3.2 影像雜訊偵測 19 3.2.1 非雜訊點偵測 19 3.2.2 孤立雜訊點偵測 23 3.2.3 非孤立雜訊點與邊界區分 26 3.3 軟式切換濾波器架構 29 3.3.1 改良式Peak-and-Valley濾波器 29 3.3.2 濾波器架構 31 3.4 脈衝雜訊與高斯雜訊辨識 35 3.4.1 已知原始影像 35 3.4.2 未知原始影像 42 第四章 實驗模擬與結果分析 43 4.1 影像品質評估 43 4.1.1 尖峰訊號雜訊比 43 4.1.2 平均絕對值誤差 44 4.2 實驗模擬 44 4.3 結果分析 61 第五章 結論與未來工作 63 5.1 結論 63 5.2 未來工作 64 參考文獻 65

    [1] B. M. Mehtre, N. N. Murthy, and S. Kapoor, “Segmentation of fingerprint using the directional image,"Pattern Recognition, vol. 20, no. 4, pp. 429-435, 1987.
    [2] Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1552-1560, Dec. 2003.
    [3] H. Zhang and J. P. Ostrowski, “Visual motion planning for mobile robots,” IEEE Trans. on Robotics and Automation, vol. 18, no. 2, pp. 199-208, April 2002.
    [4] M. Yu and Y. D. Kim, “An approach to Korean license plate recognition based on vertical edge matching,"IEEE Int. Conf. on System, Man and Cybernetics, vol. 4, pp. 2975-2980, Oct. 2000.
    [5] T. Chen and H. R. Wu, “Space variant median filters for the restoration of impulse noise corrupted images,” IEEE Trans. on Circuits and Systems, vol. 48, no. 8, pp. 784-789, Aug. 2001.
    [6] R. C. Gonzalez and R. E. Woods, Digital Image Processing, New York: Addison-Wesley, 1992.
    [7] O. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation,” IEEE Trans. on Signal Processing, vol. 39, no. 2, pp. 395-410, Feb. 1991.
    [8] S.-J. Ko and Y. H. Lee, “Center weighted median filters and their applications to image enhancement,” IEEE Trans. on Circuits and Systems, vol. 38, no. 9, pp. 984-993, Sep. 1991.
    [9] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,” Pattern Recognition Lett., vol. 15, no. 4, pp. 341-347, 1994.
    [10] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of impulse noise from highly corrupted images,” IEEE Trans. on Circuits and Systems II, Exp. Briefs, vol. 46, no. 1, pp. 78-80, Jan. 1999.
    [11] E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images,” IEEE Trans. on Image Processing, vol. 5, no. 6, pp. 1012-1025, June 1996.
    [12] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for image denoising,” IEEE Trans. on Image Processing, vol. 8, no. 12, pp. 1834-1838, Dec. 1999.
    [13] I. Andreadis and G. Louverdis, “Real-time adaptive image impulse noise suppression,” IEEE Trans. on Instrumentation and Measurement, vol. 53, no. 3, pp. 798-806, June 2004.
    [14] V. Crnojevic, V. Senk, and Z. Trpovski, “Advance impulse detection based on pixel-wise MAD,” IEEE Signal Processing Lett., vol. 11, no. 7, July 2004.
    [15] A. Taguchi, “A design method of fuzzy weighted median filter,” IEEE Int. Conf. on Image Processing, vol. 1, pp. 423-426, Sept. 1996.
    [16] Y. H. Kuo, C. S. Lee, and C. L. Chen, “High-stability AWMF filter for signal restoration and its hardware design,” Fuzzy Sets and Systems, vol. 114, no. 2, pp. 185-202, 2000.
    [17] J. H. Wang, W. J. Liu, and L. D. Lin, “Histogram-based fuzzy filter for image restoration,” IEEE Trans. on System, Man and Cybernetics, Part B, vol. 32, no. 2, pp. 230-238, April, 2002.
    [18] Y. Choi and R. Krishnapuram, “A robust approach to image enhancement based on fuzzy logic,” IEEE Trans. on Image Processing, vol. 6, pp. 808-825, June 1997.
    [19] M. Doroodchi and A. M. Reza, “Fuzzy cluster filter,” IEEE Int. Conf. on Image Processing, vol. 2, pp. 939-942, Sept. 1996.
    [20] H. L. Eng and K. K. Ma, “Noise adaptive soft-switching median filter,” IEEE Trans. on Image Processing, vol. 10, pp. 242-251, Feb. 2001.
    [21] 陳孝同、張真誠、黃國峰,數位影像處理技術,旗標,台北,民93。
    [22] 連國珍,數位影像處理,儒林,台北,民92。
    [23] 謬紹綱,數位影像處理,第二版,培生,台北,民92。
    [24] T. Chen and H. R. Wu, “Adaptive impulse detection using center-weighted median filter,” IEEE Signal Processing Lett., vol. 8, no. 1, pp. 1-3, Jan. 2001.
    [25] G. Pok, J.-C. Liu, and A. S. Nair, “Selective removal of impulse noise based on homogeneity level information,” IEEE Trans. on Image Processing, vol. 12, no. 1, Jan. 2003
    [26] S. Zhang and M. A. Karim, “A new impulse detector for switching median filters,” IEEE Signal Processing Lett., vol. 9, no. 11, pp. 360-363, Nov. 2002.
    [27] E. Abreu and S. K. Mitra, “A signal-dependent rank ordered mean (SD-ROM) filter-a new approach for removal of impulses from highly corrupted images,” in Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 4, pp. 2371-2374, May 1995.
    [28] P. S. Windyga, “Fast impulsive noise removal,” IEEE Trans. on Image Processing, vol. 10, no. 1, pp. 173-179, Jan. 2001.
    [29] 鍾國亮,數位影像處理與電腦視覺,東華,台北,民91。
    [30] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization.” IEEE Trans. on Image Processing, vol. 14, no. 10, pp. 1479-1485, Oct. 2005.
    [31] N. Alajlan, M Kamel, and E. Jernigan, “Detail preserving impulse noise removal,” Signal Processing on Image Communication, vol. 19, pp. 993-1003, 2004.
    [32] D. V. D. Ville, M. Nachtegael, D. V. D, Weken, E. E. Kerre, W. Philips, and I. Lemahieu, “Noise reduction by fuzzy image filtering,” IEEE Trans. on Fuzzy System, vol. 11, no.4, pp. 429-436, Aug. 2003.

    下載圖示 校內:2008-09-04公開
    校外:2008-09-04公開
    QR CODE