簡易檢索 / 詳目顯示

研究生: 謝麗英
Hsieh, Li-Ying
論文名稱: 在離子液體中以電化學法製備多孔性鈀銀鋅電催化材料與電鍍鉍金屬
Electrochemical Fabrication of Porous PdAgZn Electrocatalyst and Electrodeposition of Bi in Ionic Liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 106
中文關鍵詞: 離子液體多孔性PdAgZn深共熔溶劑電沉積
外文關鍵詞: Ionic liquid, porous PdAgZn, bismuth, deep eutectic solvent, electrodeposition
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討離子液體與深共熔溶劑在電化學上的應用,內容包括兩部分,第1部分是在ZnCl2-EMIC離子液體中電沉積和溶解PdAg基材上的Zn,以製備微奈米結構PdAgZn電極應用於電催化;第2部分是在氯化膽鹼/乙二醇深共熔溶劑中於常溫常壓下電沉積鉍金屬,這兩個部分已獲得以下成果。
    第1部分:在氯化鋅-1-乙基-3-甲基咪唑(ZnCl2-EMIC)離子液體中Zn電沉積在PdAg基材上,形成PdAgZn合金,然後從PdAgZn合金中部分溶解Zn,嘗試製備微奈米結構(多孔性)PdAgZn合金。由於形成表面合金需要高溫(170°C)和適當的合金時間,這個實驗可以順利在170°C下進行合金,是因為離子液體具有良好的熱穩定性和Pd的低原子擴散性。去合金過程受限於剝離的極限,所以,不是所有形成於合金表面的Zn都能在陽極被溶解。因此,所得PdAgZn的形貌和組成比例會隨著合金/去合金的條件而變化。以乙醇的催化來測試製備的多孔性PdAgZn電極的活性,結果顯示PdAgZn合金的催化活性不僅取決於表面積,亦與組成比例有關。
    第2部分:鉍(III)的電化學行為在常溫常壓下於深共熔溶劑(DES)中進行研究,DES是由1莫耳當量的氯化膽鹼和2莫耳當量乙二醇混合而成的溶劑,並使用Bi(NO3)3作為Bi(III) 的來源。由循環伏安法顯示從大氣中吸附的水會降低DES的黏度,因此有利於Bi(III)還原為Bi。然而,高含水量的存在抑制了Bi(NO3)3在DES中的溶解度。計時安培法實驗顯示鉍金屬在玻璃碳電極上的沉積涉及過電位驅動的三維瞬時成核/成長,但是在鉑和鎳電極上則涉及逐步成核/成長。透過定電位電解法將結晶鉍沉積在Ni電極上,而掃描式電子顯微鏡圖顯示使沉積的還原電位更負,以及(或)提高溫度將減少沉積物的粒徑大小。粉末X光繞射圖形則顯示晶面成長的優先取向,亦可以藉由Bi(III)和Cu之間的置換反應在銅基材上形成鉍鍍層。

    There are two subtopics in the research. The contents include part 1: Electrodeposition and dissolution of Zn on PdAg foil in a chlorozincate ionic liquid to fabricate micro- nanostructured PdAgZn alloy films for electrocatalysis, and part 2: Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere. These two subtopics have the following results.
    Part 1: The fabrication of micro-nanostructured (porous) PdAgZn films is attempted by electrodeposition of Zn on PdAg substrate to form PdAgZn surface alloy followed by partial electrochemical dissolution of Zn from the PdAgZn alloy. The preparation was performed in a ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid due to the high thermal stability of this melt. High working temperature (170C) and an alloying time are required for the formation of the surface alloy owing to the low atom diffusivity of Pd. Not all the Zn in the surface alloy can be anodically dissolved because of the parting limit associated with dealloying process. Therefore, the morphology and composition of the resulted PdAgZn varied with the alloying/dealloying condition. Electro-oxidation of ethanol was used as an example to test the activity of the prepared porous PdAgZn electrodes. The results showed that the catalytic activity of the PdAgZn depends on not only the surface area but also the composition of the produced PdAgZn.
    Part 2: The electrochemical behavior of bismuth(III) is investigated under ambient atmosphere in the ethaline deep eutectic solvent (DES) that is obtained by mixing 1.0 mol eq. of choline chloride and 2.0 mol eq. of ethylene glycol using Bi(NO3)3 as the Bi(III) source. Cyclic voltammetry indicates that the presence of water adsorbed from the atmosphere reduces the viscosity of the DES, and hence facilitates the reduction of Bi(III) to Bi. The presence of high water contents, however, suppresses the solubility of Bi(NO3)3 in the DES. Chronoamperometry experiments indicate that while the deposition of bismuth at a glassy carbon electrode involves with an overpotential-driven three dimensional instantaneous nucleation/growth process, the deposition of bismuth at the platinum, and nickel electrode involves with a progressive nucleation/growth. Crystalline bismuth films are deposited on Ni electrode by constant potential electrolysis. Scanning electron microscope images reveal that making the deposition potential more negative and/or increasing the temperature will reduce the deposited particle size. X-ray powder diffraction patterns suggest preferred orientation of the crystal growth. Bismuth coating can also be formed on copper substrate by galvanic displacement reaction between Bi(III) and Cu.

    Contents Abstract...........I 中文摘要...........III Acknowledgments.........IV Contents...........V List of tables..........VIII List of figures...........IX List of symbols...........XIII Chapter1 Introduction..........1 1-1 Ionic liquids...........1 1-1-1 The definition of ionic liquids.........1 1-1-2 The development of ionic liquids.........3 1-1-3 The characteristics and application of ionic liquids.......5 1-2 ZnCl2–EMIC ionic liquids.........8 1-2-1 Lewis acid-base concepts............8 1-2-2 The properties and electrochemical window of ZnCl2–EMIC ionic liquids..9 1-3 Deep eutectic solvent, DES.........12 1-3-1 Brief description of DES..........12 1-3-2 The melting point of DES..........16 1-4 Electrochemical alloying/dealloying........20 1-5 Ethanol electocatalysis..........25 1-6 Motivation and literature review........28 1-6-1 Electrodeposition and dissolution of Zn on PdAg foil in a chlorozincate ionic liquid to fabricate micro-nanostructured PdAgZn Alloy films for electrocatalysis.........28 1-6-2 Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere.......30 Chapter 2 Electrochemical theory and method......32 2-1 Electrochemical theory..........32 2-2 Cyclic voltammetry (CV)........35 2-3 Chronoamperometry (CA).........38 2-4 Nucleation...........40 2-4-1 The process of nucleus formation.......40 2-4-2 The kinectics of nucleation.........42 2-4-3 Two-dimensional nucleation and growth......46 2-4-4 Three-dimensional nucleation and growth......49 Chapter 3 Experimental.........54 3-1 Electrodeposition and dissolution of Zn on PdAg foil in a chlorozincate ionic liquid to fabricate micro-nanostructured PdAgZn Alloy films for electrocatalysis...54 3-2 Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere ........57 Chapter 4 Results and discussion........59 4-1 Electrodeposition and dissolution of Zn on PdAg foil in a chlorozincate ionic liquid to fabricate micro-nanostructured PdAgZn Alloy films for electrocatalysis.....59 4-1-1 Voltammetry of Zn on PdAg substrate......59 4-1-2 Fabrication of the PdAgZn nanostructure......61 4-1-3 Performance of the nanostructured PdAgZn electrodes for the electro-oxidation of ethanol...........70 4-2 Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere.........75 4-2-1 Cyclic voltammetry of Bismuth(III)......75 4-2-2 Chronoamperometry of Bi(III)/Bi couple......81 4-2-3 Deposition and characterization of Bi film......84 4-2-4 Deposition of Bi on Cu via galvanic displacement reaction....90 4-2-5 Influence of water content on the voltammetry of Bi(NO3)3 in the DES.92 Chapter 5 Conclusions............94 5-1 Electrodeposition and dissolution of Zn on PdAg foil in a chlorozincate ionic liquid to fabricate micro-nanostructured PdAgZn alloy films for electrocatalysis.94 5-2 Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere.......95 References...........97 List of tables Table 1-1 Melting points of common high temperature molten salts....1 Table 1-2 General formular for the classification of DES......13 Table 1-3 Melting and eutectic point temperatures of the constituents of various DES.18 Table 2-1 α and n values of different nucleation modes......45 Table 2-2 Some correlated physical parameters about nucleation process obtained from im and tm.........53 Table 4-1 Compositions of the dealloyed PdAgZn surface films prepared by deposition of Zn at -0.2 V and dealloyed at 1.0 V in a 40-60 mol% ZnCl2-EMIC ionic liquid..........68 Table 4-2 Charge (in mC cm-2) integrated from the CVs shown in Fig. 4-5. Qa is the charge of the cathodic reduction peak in 1.0 M KOH solution, Qf is the charge of the forward anodic peak, and Qr is the charge for the reversed anodic peak for the electro-oxidation of ethanol in 1.0 M KOH + 1.0 M ethanol. The electrodes were fabricated as in Table 4-1.........72   List of figures Figure 1-1 Cationic and anionic species commonly found in ionic liquids...2 Figure 1-2 Application of ionic liquids........7 Figure 1-3 Structure of EMIC.........8 Figure 1-4 Nagetive-ion FAB mass spectra of various ZnCl2-EMIC ionic liquids. The mole ratio of ZnCl2 to EMIC are: (a) 1:3, (b) 1:1, (c) 2:1, and (d) 3:1 ....10 Figure 1-5 Cyclic voltammograms of various ZnCl2-EMIC ionic liquids recorded on a glassy carbon electrode at 120oC. The mole ratio of ZnCl2 to EMIC are: (a) 1:3, (b) 1:2, (c) 1:1, (d) 2:1, and (e) 3:1. The potential scan rate was 50 mV s-1.11 Figure 1-6 Structure of ChCl.........12 Figure 1-7 Structures of commonly halide salts and hydrogen bond donors used in the formation of DESs........15 Figure 1-8 Schematic representation of a phase diagram and eutectic point of the two components in various proportions........16 Figure 1-9 Diagram of correlation between the freezing temperature and the depression of freezing point for metal salts and amides when mixed with choline chloride in 2:1 ratio, where the individual points represent different mixtures...18 Figure 1-10 Porous materials prepared by a variety of alloy/dealloying processing routes. (a) Pt (b) Au (c) Sn (d) Si (e) Cu/Ta(up) Ta(down) (f) Ti. ....22 Figure 1-11 Schematic diagram of porosity formation during dealloying...24 Figure 1-12 Cyclic voltammograms for ethanol electrooxidation on different electrode in 1.0 M ethanol + 1.0 M KOH with Pt or Pd loading:0.10 mg cm-2 and a scan rate of 5 mV s-1..........27 Figure 2-1 Schematic diagram of the electrode reaction steps.....32 Figure 2-2 Schematic diagram of cyclic voltammetry. (a) Potential-time profile, (b) Current-potential curve..........36 Figure 2-3 Schematic diagram of chronoamperometry (a) potential-time profile, (b) current-time profile.........39 Figure 2-4 The stages in the formation and growth of a single nucleus of the metal on the electrode.........41 Figure 2-5 Schematic diagram of instantaneous nucleation (left) and progressive nucleation (right) on the electrode surface........43 Figure 2-6 Schematic diagram of two-dimensional nucleation and growth..46 Figure 2-7 The theoretical dimensionless current-time transients for the 2-D instantaneous and progressive nucleation process........48 Figure 2-8 Schematic diagram of three-dimensional nucleation and growth..49 Figure 2-9 The theoretical dimensionless current-time transients for the 3-D instantaneous and progressive nucleation process.......52 Figure 2-10 Three-dimensional nucleation growth (a) current-time curve, (b) converted nucleation curve.........53 Figure 3-1 Three-electrode electrochemical cell.....55 Figure 4-1 Cyclic voltammograms recorded in a 40–60 mol% ZnCl2-EMIC ionic liquid at PdAg electrode at: (a) 170C, (b) 150C, (c) 170C, and (d) 200C, scan rate was 50 mV s−1.........60 Figure 4-2 Typical anodic stripping current-time curves recorded for the PdAgZn samples that were prepared by electrodeposited 10 C cm−2 of Zn on PdAg foil in the 40–60 mol% ZnCl2-EMIC and dealloyed at (a) 170C, and (b) 200C..62 Figure 4-3 Plane-view SEM images recorded for the nanostructured PdAgZn that were obtained by deposition of 10 C cm−2 Zn at −0.2 V on the PdAg foil, followed by immersing the Zn-deposited PdAg foil in this solution for 1.5 hr, and then dealloyed at +1.0 V at: (A) (B) 150C, (C) (D) 170C, and (E) (F) 200C.64 Figure 4-4 (A)(B): SEM images of PdAgZn samples that have been prepared by repeatedly three times deposited with 3.33 C cm−2 of Zn at −0.2 V, immersed for 30 min, and dealloyed at +1.0 V. (C)(D): SEM images of the PdAgZn sample prepared by depositing 10 C cm−2 Zn at−0.2V at 170C and immersed in the solution for 3 hr before anodic dealloying at 1.0 V.....66 Figure 4-5 (A) Cathodic linear scan voltammograms recorded at the PdAgZn electrodes in 1.0 M KOH aqueous solution. (B) Cyclic voltammograms recorded at the PdAgZn electrodes in 1.0 M ethanol + 1.0 M KOH aqueous solution. The conditions for preparation of the electrodes are indicated in Table 4-1..69 Figure 4-6 (A) The current vs. time curve recorded during the constant potential electro-oxidation of 1.0 M ethanol in 1.0 M KOH solution at −0.3 V on (a) nanostructured PdAgZn, and (b) unmodified PdAg electrodes.....73 Figure 4-6 (B) Cyclic voltammogram recorded in a fresh 1.0 M ethanol + 1.0 M KOH solution on the nanostructured PdAgZn electrode before and after being used for electro-oxidation of ethanol for one hour......74 Figure 4-7 Cyclic voltammograms of 10 mM Bi(III) introduced as Bi(NO3)3 in ethaline DES recorded at (A) GC, (B) Ni, (C) Pt, and (D) Au electrodes at 30°C. The scan rates are indicated in the figure. .......77 Figure 4-8 Plots of the cathodic peak potential, Epc, vs. scan rate of the cyclic voltammograms shown in Figure 4-7. ............78 Figure 4-9 Cyclic voltammograms of 10 mM Bi(III) introduced as Bi(NO3)3 in ethaline DES recorded on a Ni electrode at 30°C and 60°C, respectively. The scan rate was 50 mVs−1. ..........80 Figure 4-10 Comparison between theoretical and experimental (i'/i'm)2 vs. (t'/t'm) plot for Bi deposition at 30°C on (A) GC, (B) Pt, (C) Ni, and at 60°C on (D) Ni electrodes in ethaline DES containing 10 mM Bi(III). Inset shows chronoamperometric current-time transients obtained at indicated potentials. ....82 Figure 4-11 (A) The i-t curves recorded during the constant potential deposition of Bi on Ni foils from an ethaline DES containing 50 mM Bi(III) at the indicated potential at 30°C. Inset in (A) is the CV recorded for this solution. The SEM images of the deposits obtained at (B) −0.04 V, (C) −0.07 V, and (D) −0.10 V.86 Figure 4-12 (A) The i-t curves recorded during the constant potential deposition of Bi on Ni foils from an ethaline DES containing 50 mM Bi(III) at the indicated potential at 60°C. The SEM images of the deposits obtained at (B) −0.04 V, and (C) −0.07 V. ...........87 Figure 4-13 XRD patterns of Bi electrodeposited on Ni foil from ethaline DES containing 50 mM of Bi(NO3)3 at (A) 30°C, and (B) 60°C. The applied electrodeposition potentials are indicated in the figures. The reflection patterns of the Ni substrate are indicated with (◆). .........89 Figure 4-14 (A) Cyclic voltammograms recorded at a GC electrode for the solutions of ethaline DES containing Bi(NO3)3, and Cu(NO3)2, respectively, at 30°C. The scan rate was 50 mVs−1. (B) XRD patterns of the Bi-deposited Cu foil sample shown in (C). (C) and (D) are the SEM micrographs of the Bi- deposited Cu foil by galvanic displacement of Bi on Cu in an ethaline DES containing 50 mM Bi(NO3)3 at 30°C.. ........91 Figure 4-15 Cyclic voltammograms recorded at a GC electrode at 30°C of a ethaline DES containing various water contents: as synthesized (black), and after adding 1.11 mL (green), 3.11 mL (red), and 4.11 mL (blue) of water. ....93

    1. Z. Y. Kang, M. G. He, G. X. Lu, and Y. Zhang, Calphad-Comput. Coupling Ph. Diagrams Thermochem., 55, 208 (2016).
    2. N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 37, 123 (2008).
    3. A. Stark and K. R. Seddon, Kirk-Othmer Encyclopaedia of Chemical Technology, 26, 836 (2007).
    4. P. C. Ray and J. N. Rakshit, J. Chem. Soc., 1470 (1911).
    5. P. Walden, Bull. Acad. Imper. Sci., 1800 (1914).
    6. F. H. Hurley and J. P. Wier, J. Electrochem. Soc., 98 (1951).
    7. R. J. Gale, B. Gilbert, and R.A. Osteryoung, Inorg. Chem., 17, 2728 (1978).
    8. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, and C. L. Hussey, J. EIectrochem. Soc., 126, 1644 (1979).
    9. J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem., 21, 1263 (1982).
    10. J. S. Wilkes and M. J. Zaworotko, J. Chem. Soc. Chem. Commun., 13, 965 (1992).
    11. P. Bonhôte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gra1tzel, Inorg. Chem., 35 (5), 1168 (1996).
    12. K. Ghandi, Green Sustain. Chem., 4, 44 (2014).
    13. T. L. Greaves and C. J. Drummond, Chem. Rev, 108, 206 (2008).
    14. K. R. Seddon, A. Stark, and M. J. Torres, Pure Appl. Chem., 72, 2275 (2000).
    15. T. Torimoto, T. Tsuda, K. Okazaki, and S. Kuwabata, Adv. Mater., 22, 1196 (2010).
    16. M. Doyle, S. K. Choi, and G. Proulx, J. Electrochem. Soc., 147, 34 (2000).
    17. D. R. MacFarlane, J. H. Huang, and M. Forsyth, Nature, 402, 792 (1999).
    18. J. D. Decoppet, S. B. Khan, M. S. A. Al-Ghamdi, B. G. Alhogbi, A. M. Asiri, S. M. Zakeeruddin, and M. Grätzel, Energy Technol., 5, 321 (2017).
    19. N. A. A. Latip, H. M. Ng, N. Farah, K. Ramesh, and S. Ramesh, Org. Electron., 41, 33 (2017).
    20. T. J. Boyle, D. Ingersoll, M. A. Rodriguez, C. J. Tafoya, and D. H. Doughty, J. Electrochem. Soc., 146, 1683 (1999).
    21. I. M. AlNashef, M. L. Leonard, M. C. Kittle, M. A. Matthews, and J. W. Weidner, Electrochem. Solid State Lett., 4, D16 (2001).
    22. I. M. AlNashef, M. L. Leonard, M. A. Matthews, and J. W. Weidner, Ind. Eng. Chem. Res., 41, 4475 (2002).
    23. M. C. Buzzeo, C. Hardacre, and R. G. Compton, Anal. Chem., 76, 4583 ( 2004).
    24. M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon, and R. G. Compton, J. Phys. Chem. A, 107, 8872 (2003).
    25. D. Giovanelli, M. C. Buzzeo, N. S. Lawrence, C. Hardacre, K. R. Seddon, and R. G. Compton, Talanta, 62, 904 (2004).
    26. S. I. Hsiu, J. F. Huang, I. W. Sun, C. H. Yuan, and J. Shiea, Electrochim. Acta, 47, 4367 (2002).
    27. A. A. Fannin, D. A. F Jr., L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, R. L Wilkes, and J. L. Williams, J. Phys. Chem., 2614 (1984).
    28. A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah, Chem. Commun., DOI: 10.1039/b106357j, 2010 (2001).
    29. E. L. Smith, A. P. Abbott, and K. S. Ryder, Chem. Rev., 114, 11060 (2014).
    30. Y. F. Lin and I. W. Sun, Electrochim. Acta, 44, 2771 (1999).
    31. A. P. Abbott, G. Capper, D. L. Davies, and R. Rasheed, Inorg. Chem., 43, 3447 (2004).
    32. F. H. Hurley and T. P. Wier, J. Electrochem. Soc., 98, 207 (1951).
    33. W. G. Xu, X. M. Lu, Q. G. Zhang, J. S. Gui, and J. Z. Yang, Chin. J. Chem., 24, 331 (2006).
    34. J. Z. Yang, P. Tian, L. L. He, and W. G. Xu, Fluid Phase Equilib., 204, 295 (2003).
    35. A. P. Abbott, G. Capper, D. L. Davies, and R. K. Rasheed, Chem.-Eur. J., 10, 3769 (2004).
    36. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, Chem. Commun., DOI: 10.1039/b210714g, 70 (2003).
    37. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, J. Am. Chem. Soc., 126, 9142 (2004).
    38. A. P. Abbott, G. Capper, B. G. Swain, and D. A. Wheeler, Trans. Inst. Metal Finish., 83, 51 (2005).
    39. T. Scheffler and M. Thomson, Seventh International Conference on Molten Salts, The Electrochemical Society Montreal, Quebec, Canada, 1990.
    40. A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie, and S. U. Obi, J. Chem. Eng. Data, 51, 1280 (2006).
    41. A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, and E. Raven, Green Chem., 9, 868 (2007).
    42. A. P. Abbott, T. J. Bell, S. Handa, and B. Stoddart, Green Chem., 8, 784 (2006).
    43. A. P. Abbott, J. C. Barron, K. S. Ryder, and D. Wilson, Chem.-Eur. J., 13, 6495 (2007).
    44. M. S. Sitze, E. R. Schreiter, E. V. Patterson, and R. G. Freeman, Inorg. Chem., 40, 2298 (2001).
    45. H. Z. Yang, Y. Jin, W. G. Xu, Q. G. Zhang, and S. L. Zang, Fluid Phase Equilib., 227, 41 (2005).
    46. C. Calvert and R. Johnson, J. Chem. Soc., Chem. Commun., 19, 434 (1866).
    47. A. J. Forty, Nature, 282, 597 (1979).
    48. J. Erlebacher, Scr. Mater., 49, 991 (2003).
    49. J. Erlebacher, J. Electrochem. Soc., 10, C614 (2004).
    50. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature, 410 (2001).
    51. J. D. Fritz and H. W. Pickering, J. Electrochem. Soc., 138 (1998).
    52. J. Snyder, K. Livi, and J. Erlebacher, Adv. Funct. Mater., 22, 5494 (2013).
    53. F. Scaglione, F. Celegato, P. Rizzi, and L. Battezzati, Intermetallics, 66, 82 (2015).
    54. Q. Chen and K. Sieradzki, Nat. Mater., 12, 1102 (2013).
    55. T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida, and H. Kato, Nano Lett., 14, 4505 (2014).
    56. I. McCue, S. Ryan, K. Hemker, X. Xu, N. Li, M. Chen, and J. Erlebacher, Adv. Eng. Mater., 18, 46 (2016).
    57. Y. C. K. Chen-Wiegart, T. Wada, N. Butakov, X. Xiao, F. De Carlo, H. Kato, J. Wang, D. C. Dunand, and E. Maire, J. Mater. Res., 28, 2444 (2013).
    58. J. Erlebacher, J. Electrochem. Soc., 151, C614 (2004).
    59. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher, Ann. Rev. Mater. Res., 46, 1.1 (2016).
    60. J. Snyder and J. Erlebacher, J. Electrochem. Soc., 157, C125 (2010).
    61. K.Wiesner, Z. Elektrochemie, 49, 164 (1943).
    62. Y. L. Wang, Y. Q. Zhao, C. L. Xu, D. D. Zhao, M. W. Xu, Z. X. Su, and H. L. Li, J. Power Sources, 195, 6496 (2010).
    63. C. Bianchini and P. K.Shen, Chem. Rev., 109, 4183 (2009).
    64. R. N. Singh and S. A. Anindita, Carbon, 47, 271 (2009).
    65. E. H. Yu, K. Scott, and R. W. Reeve, J. Electrochem. Soc., 547(1), 17 (2003).
    66. J. Liu, J. Ye, C. Xu, S. P. Jiang, and Y. Tong, Electrochem. Commun., 9, 2334 (2007).
    67. M. A. Sattar and B. E. Conway, Electrochim. Acta, 14, 695 (1969).
    68. C. Xu, L.Cheng, P. Shen, and Y. Liu, Electrochem. Commun., 9, 997 (2007).
    69. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher, Annu. Rev. Mater. Res., 46, 263 (2016).
    70. H. W. Pickering and C. Wagner, J. Electrochem. Soc., 114, 698 (1967).
    71. J. Erlebacher,M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature, 410, 450 (2001).
    72. J. Erlebacher and R. Seshadri, MRS Bull., 34, 561 (2009).
    73. D. V. Pugh, A. Dursun, and S. G. Corcoran, J. Mater. Res., 18, 216 (2003).
    74. C. X. Ji and P. C. Searson, J. Phys. Chem. B, 107, 4494 (2003).
    75. Y. Ding, Y. J. Kim, and J. Erlebacher, Adv. Mater., 16, 1897 (2004).
    76. A. A. Vega and R. C. Newman, J. Electrochem. Soc., 161, C1 (2014).
    77. L. Sun, C. L. Chien, and P. C. Searson, Chem. Mater., 16, 3125 (2004).
    78. J. K. Chang, S. H. Hsu, I. W. Sun, and W. T. Tsai, J. Phys. Chem. C, 112, 1371 (2008).
    79. V. Mazumder and S. Sun, J. Am. Chem. Soc., 131, 4588 (2009).
    80. E. Antolini, Energy Environ. Sci., 2, 912 (2009).
    81. Y. Lu and W. Chen, J. Phys. Chem. C, 114, 21190 (2010).
    82. N. Abbasi, P. Shahbazi, and A. Kiani, J. Mater. Chem. A, 1, 9966 (2014).
    83. K. Mandal, D. Bhattacharjee, and S. Dasgupta, Int. J. Hydrog. Energy, 40, 4786 (2015).
    84. Y. G. Jo, S. M. Kim, J. W. Kim, and S. Y. Lee, J. Alloy. Compd., 688, 447 (2016).
    85. G. T. Fu, C. Liu, Q. Zhang, Y. Chen, and Y. W. Tang, Sci. Rep., 5, 13703 (2015).
    86. Y. Feng, K. Zhang, B. Yan, S. Li, and Y. Du, Catalyts, 6, 103 (2016).
    87. R. A. Dagle, Y. H. Chin, and Y. Wang, Top. Catal., 46, 358 (2007).
    88. Z. Q. Huang, B. Long, and C. R. Chang, Catal. Sci. Technol., 5, 2935 (2015).
    89. J. R. Gallagher, D. J. Childers, H. Zhao, R. E. Winans, R. J. Meyer, and J. T. Miller, Phys. Chem. Chem. Phys., 17, 28144 (2015).
    90. H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li, and T. Zhang, ACS Catal., 6, 1054 (2016).
    91. S. Furukawa, R. Suzuki, and T. Komatsu, ACS Catal., 6, 5946 (2016).
    92. J. Ding and D. Gin, Chem. Mater., 12, 22 (2000).
    93. P. Nelsona and J. Owen, J. Electrochem. Soc., 150, A1313 (2003).
    94. S. Tanaka, T. Kaneko, N. Asao, Y. Yamamoto, M. Chen, W. Zhang, and A. Inoue, Chem. Commun., 47, 5985 (2011).
    95. Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, and J. Frenzel, J. Phys. Chem. C, 113, 12629 (2009).
    96. W. C. Li and T. J. Balk, Materials, 2, 2496 (2009).
    97. T. Tsuda and C. L. Hussey, “Electrochemistry of Room-Temperature Ionic Liquids and Melts”, in Morden Aspects of Electrochemistry, ed. R.E. White, Springer New York, New York, 1st edn., (2009).
    98. F. Endres, A. P. Abbott, and D. R. MacFarlane, Electrodeposition from Ionic Liquids, Wiley-VCH Verlag GmbH, Weinheim, 2nd edn., (2017).
    99. J. F. Huang and I. W. Sun, Chem. Mater., 16, 1829 (2004).
    100. J. F. Huang and I. W. Sun, Adv. Funct. Mater., 15, 989 (2005).
    101. F. H. Yeh, C. C. Tai, J. F. Huang, and I. W. Sun, J. Phys. Chem. B, 110, 5215 (2006).
    102. Y. W. Lin, C. C. Tai, and I. W. Sun, J. Electrochem. Soc., 154, D316 (2007).
    103. J. Jiang, L. Zhang, and X. Wang, ACS Appl. Mater. Interfaces, 5, 12689 (2013).
    104. Q. B. Zhang, A. P. Abbott, and C. Yang, Phys. Chem. Chem. Phys., 17, 14702 (2015).
    105. C. Yang, Q. B. Zhang, M. Y. Gao, Y. X. Hua, and C. Y. Xu, J. Electrochem. Soc., 163(9), D469 (2016).
    106. C. Prior, S. B. Hoc, I. Svancara, and J. Wang, Electroanalysis, 22, 1405 (2010).
    107. C. A. De Lima and A. Spinelli, Electrochim. Acta, 107, 542 (2013).
    108. N. Reim, A. Littig, D. Behn, and A. Mews, J. Am. Chem. Soc., 135, 18520 (2013).
    109. P. M.Vereecken,K. Rodbell, C. X. Ji, and P. C. Searson, Appl. Phys. Lett., 86, 121916 (2005).
    110. M. Yang and Z. Hu, J. Electroanal. Chem., 583, 46 (2005).
    111. E. Sandnes, M. E. Williams, U. Bertocci, M. D. Vaudin, and G. R. Stafford, Electrochim. Acta, 52, 6221 (2007).
    112. M. Yang, J. Mater. Chem., 21, 3119 (2011).
    113. A. R. Rajamani, U. B. R. Ragula, N. Kothurkar, and M. Rangarajan, CrystEngComm, 16, 2032 (2014).
    114. A. Das and M. V. Sangaranarayanan, CrystEngComm, 18, 1147 (2016).
    115. A. R. Rajamani, S. Jothi, M. Datta, and M. Rangarajan, J. Electrochem. Soc., 165(2), D50 (2018).
    116. Y. D. Tsai, C. H. Lien, and C. C. Hu, Electrochim. Acta, 56, 7615 (2011).
    117. H. Ebe, M. Ueda, and T. Ohtsuka, Electrochim. Acta, 53, 100 (2007).
    118. T. Tsuda, G. R. Stafford, and C. L. Hussey, J. Electrochem. Soc., 164, H5007 (2017).
    119. F. Endres, D. MacFarlane, and A. Abbott, Electrodepositin from Ionic Liquids, 2nd edition, Wiley VCH, Weinheim (2017).
    120. T. Tsuda and C. L. Hussey, “Electrochemistry of Room-Temperature Ionic Liquids and Melts” in Modern Aspects of Electrochemistry, Vol. 45, R.E. White, editor, Springer, New York (2009).
    121. Y. Katayama, “Electrodeposition of metals in ionic liquids”, in Electrochemical Aspects of Ionic Liquids, 2nd edition., H. Ohno, editor, John Wiley & Sons, Inc., New York (2011).
    122. F. Golgovici and T. Visan, Chalcogenide Lett., 9, 427 (2012).
    123. F. Golgovici, T. Visan, and M. Buda, Chalcogenide Lett., 10, 197 (2013).
    124. C. Agapescu, A. Cojocaru, A. Cotarta, and T. Visan, J. Appl. Electrochem, 43, 309 (2013).
    125. Y. Gao, W. Hu, X. Gao, and B. Duan, Surf. Eng., 30, 59 (2014).
    126. L. Vierira, J. Burt, P. W. Richardson, D. Schloffer, D. Fuchs, A.Moser, P. N. Bartlett, G. Reid, and B. Gollas, ChemistryOpen, 6, 393 (2017).
    127. D. Pletcher, A first course in electrode processes, England: The Electrochemical consultancy, 1991.
    128. G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, J. Electroanal. Chem. Interfacial Electrochem., 138, 225 (1982).
    129. P. Allongue and E. Souteyrand, J. Electroanal. Chem. Interfacial Electrochem., 286, 217 (1990).
    130. G. Gunawardena, G. Hills, and I. Montenegro, J. Electroanal. Chem., 138, 241 (1982).
    131. G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, J. Electroanal. Chem., 138, 255 (1982).
    132. G. Gunawardena, G. Hills, and I. Montenegro, J. Electroanal. Chem., 184, 357(1985).
    133. G. Gunawardena, G. Hills, and I. Montenegro, J. Electroanal. Chem., 184, 371 (1985).
    134. G. Trejo, A. F. Gil, and I. González, J. Appl. Chem., 26, 1287 (1996).
    135. G. Trejo, R. Ortega B., Y. Meas V., P. Ozil, E. Chainet, and B. Nguyen, J. Electrochem. Soc., 145, 4090 (1998).
    136. L. Legrand, A. Tranchant, and R. Messina, J. Electrochem. Soc., 141, 378 (1994).
    137. C. L. Hussey and X. Xu, J. Electrochem. Soc., 138, 1886 (1991).
    138. X. H. Xu and C. L. Hussey, J. Electrochem. Soc., 139, 1295 (1992).
    139. X. H. Xu and C. L. Hussey, J. Electrochem. Soc., 139, 3103 (1992).
    140. X. H. Xu and C. L. Hussey, J. Electrochem. Soc., 140, 618 (1993).
    141. X. H. Xu and C. L. Hussey, J. Electrochem. Soc., 140, 1226 (1993).
    142. W. R. Pitner and C. L. Hussey, J. Electrochem. Soc., 144, 3095 (1997).
    143. J. S. Y. Liu and I. W. Sun, J. Electrochem. Soc., 144, 140 (1997).
    144. Y. F. Lin and I. W. Sun, J. Electrochem. Soc., 146, 1054 (1999).
    145. B. Scharifker and G. Hills, Electrochim. Acta, 28, 879 (1983).
    146. A. P. Abbott, R. C. Harris, F. Holyoak, G. Frisch, J. Hartley, and G. R. T. Jenkin, Green Chem., 17, doi:10.1039/C4GC02246G, 2172 (2015).
    147. H. W. Pickering and P. J. Byrne, J. Electrochem. Soc., 118(2), 209 (1971).
    148. D. M. Artymowicz, J. Erlebacher, and R. C. Newman, Philos. Mag., 89, 1663 (2009).
    149. D. M. Kolb, M. Przasnyski, and H. Gerischer, J. Electroanal. Chem. Interfacial Electrochem., 54, 25 (1974).
    150. H. B. Michaelson, J. Appl. Phys., 48, 4729 (1977).
    151. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed., Wiley, New York (2001).
    152. Z. Liu, S. Zein El Abedin, and F. Endres, Electrochim. Acta, 89, 635 (2013).
    153. V. S. Protsenko, A. A. Kityk, D. A. Shaiderov, and F. I.Danilov, J. Mol. Liq., 212, 716 (2015).
    154. T. Cui, A. Lahiri, T. Carstens, N. Borisenko, G. Pulletikurthi, C. Kuhl, and F. Endres, J. Phys. Chem. C., 120, 9341 (2016).
    155. Y. C. Liu, Y. C. Chen, Y. T. Hsieh, and I. W. Sun, J. Phys. Chem. C, 121, 8907 (2017).

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE