簡易檢索 / 詳目顯示

研究生: 陳文建
Chen, Wen-Chien
論文名稱: SOPC基礎之大人形雙足機器人 之人體雙足姿態追蹤控制
SOPC Based Human Biped Motion Tracking Control for Human-Sized Biped Robot
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 96
中文關鍵詞: 雙足感測器加速度計陀螺儀機器人運動控制卡爾曼濾波器人體姿態
外文關鍵詞: accelerometer, sensor, motion control, robot, biped, gyroscope, human posture, Kalman filter
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係探討大人形雙足機器人aiRobot-HBR1之運動控制系統設計,並利用感測器控制模組追蹤人體雙足姿態以控制機器人的動作與行為。aiRobot-HBR1是一個110公分、40公斤,具有12個自由度的大人形雙足機器人,文中描述機器人之運動控制系統架構與動作規劃方法,結合所設計的馬達控制器、人機介面與感測器控制模組,以Nios FPGA為處理核心,基於SOPC發展介面,構成一個發展機器人控制策略的平台。另外,本文建立感測器控制模組的動態模型,感測器控制模組融合了加速度計與陀螺儀,將感測器量測的資訊傳送至機器人的處理核心中,以卡爾曼濾波器估測動態模型的狀態,達成人體雙足姿態追蹤。結合機器人與人體雙足姿態追蹤,我們利用估測的雙足姿態控制雙足機器人,發展雙足機器人之即時人體雙足姿態追蹤控制與人體雙足姿態辨識方法。最後,由實際實驗結果來驗證所設計之運動控制系統效能,以及即時人體雙足姿態追蹤控制與人體雙足姿態辨識方法之效益。

    This thesis presents the motion control system design of the human-sized biped robot, aiRobot-HBR1, and proposes a human biped motion (HBM) tracking control approach in which humans can control the robot by an integrated sensor control module (ISCM). aiRobot-HBR1 is a human-size biped robot with 110 cm height and 40 Kg weight, and has a total of 12 D.O.Fs.
    First, this thesis presents the control structure of the motion control system and the motion pattern planning of the robot. Designing the motor controller, the graphic user interface, and the integrated sensor control module along with the central processor unit, Nios FPGA, we construct a control platform for developing the control strategies of the robot based on SOPC. Furthermore, this thesis establishes the dynamic model of the integrated sensor control module which integrates a gyro and an accelerometer. The Kalman filter is utilized to estimate the states of the model to track the human biped motion. Combining the biped robot with the tracking result of the human-body motion, we propose a real-time HBM tracking control and a HBM recognition approach. The estimated posture is used to control the motion and the behavior of aiRobot-HBR1. Finally, the experiment results indicate the validity of the proposed motion control system, real-time HBM tracking control, and the HBM recognition.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Mechanism and Hardware of aiRobot-HBR1 and ISCM 5 2.1 Introduction 5 2.2 Overview of aiRobot-HBR1 6 2.3 Mechanism and Hardware of aiRobot-HBR1 9 2.3.1 Central Processor Unit: NIOS II FPGA 9 2.3.2 Actuators, Encoders, and Drivers 10 2.3.3 Power System and Isolation Circuits 12 2.3.4 Drive System 14 2.3.5 Mechanical Elements 15 2.3.6 Mechanism Design 16 2.4 Hardware of the ISCM 17 2.4.1 Micro Controller Unit: AT89C52 17 2.4.2 Accelerometer 17 2.4.3 Gyroscope 18 2.4.4 Hardware Configuration of the ISCM 20 2.5 Summary 22 Chapter 3 Design of the Motion Control System 23 3.1 Introduction 23 3.2 Design of the Motor Controller in NIOS II FPGA 25 3.4.1 PD Controller 25 3.4.2 Feedback Decoder Unit 27 3.4.3 PWM Unit 29 3.4.4 Implementation Result in NIOS II FPGA 29 3.3 Motion Pattern Planning 31 3.5.1 Graphic User Interface 31 3.5.2 Trajectory Planning 32 3.4 Control Structure of the Motion Control System 36 3.5 Summary 38 Chapter 4 Design of the HBM Tracking Control 39 4.1 Introduction 39 4.2 Overview of Robotics 41 4.2.1 Homogeneous Transformation Matrix 41 4.2.2 Rotation Matrix about an Arbitrary Axis 43 4.3 Human Body Model 44 4.4 Dynamic Model of the ISCM 48 4.4.1 Characteristics of Accelerometer and Gyro 48 4.4.2 Dynamic Model of the ISCM 49 4.5 Kalman Filter Based HBM Tracking 54 4.5.1 Overview of Kalman Filter 54 4.5.2 Kalman Filter Based HBM Tracking 57 4.6 HBM Tracking Control with the ISCM 61 4.6.1 Real-time HBM Tracking Control 61 4.6.2 Feature Extraction of HBM 62 4.6.3 HBM Recognition 71 4.7 Summary 75 Chapter 5 Experiment Results 76 5.1 Introduction 76 5.2 Experiment Results of the Motion Control System 77 5.3 Experiment Results of the Real-time HBM Tracking Control 79 5.4 Experiment Results of the HBM Recognition 83 Chapter 6 Conclusions and Future Works 88 6.1 Conclusions 88 6.2 Future Works 90 Appendix A 91 References 93 Biography 96

    [1] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki and K. Fujimura, “The intelligent ASIMO: system overview and integration,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and System, vol. 3, pp. 2478 – 2483, 2002.
    [2] H. Hirukawa, S. Kajita, F. Kanehiro and K. Kaneko, “The human-size humanoid robot that can walk, lie down and get up,” in Proc. International Journal of Robotics Research, vol. 24, no. 9, pp. 755 – 769, Sep. 2005.
    [3] JSK Lab., http://www.jsk.t.u-tokyo.ac.jp/research.html
    [4] Takanishi Lab., http://www.takanishi.mech.waseda.ac.jp/
    [5] MIT leg Lab., http://www.ai.mit.edu/projects/leglab/
    [6] K. Loffler, M. Gienger, F. Pfeiffer and H. Ulbrich, “Sensors and control concept of a biped robot,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 972 – 980, Oct. 2004.
    [7] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota and T. Isozumi, “Design of prototype humanoid robotics platform for HRP,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland, Oct. 2002.
    [8] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. Lim and A. Takanishi., “Development of a new humanoid robot WABIAN-2,” in Proc. IEEE International Conference on Robotics and Automation, pp. 76 – 81, 2006.
    [9] K. Kaneko, S. Kajita, K. Yokoi, V. Hugel, P. Blazevic and P. Coiffet., “Design of LRP humanoid robot and its control method,” in Proc. IEEE International Workshop on Robot and Human Interactive Communication, 2001.
    [10] N. Kanehira, T. Kawasaki, S. Ohta, T. Isozumi, K. Akachi, T. Kawada, F. Kanehiro, S. Kajita and K. Kaneko, “Design and experiments of advanced leg odule (HRP-2L) for humanoid robot (HRP-2) developement,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland, Oct. 2002.
    [11] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi and K. Tanie, “Planning walking patterns for a biped robot,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280 – 289, Jun. 2001.
    [12] G. Wu and Z. Ladin, “The study of kinematic transients in locomotion using the integrated kinematic sensor,” IEEE Transactions on Rehabilitation Engineering, vol. 4, no. 3, pp. 193 - 200, Sep. 1996.
    [13] G. Welch and G. Bishop, An introduction to the Kalman filter, Department of Computer Science, University of North Carolina, Chapel Hill, TR 95 – 041.
    [14] J. Leavittr, A. Sideris and J. E. Bobrow, “High bandwidth tilt measurement using low-cost sensors,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 3, pp. 320 – 327, Jun. 2006.
    [15] X. Yun and Eric R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1216 – 1227 ,Dec. 2006.
    [16] R. Zhu and Z. Zhou, “A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 2, pp. 295 – 302, Jun. 2004.
    [17] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa and K. Ikeuchi, “Generating whole body motions for a biped humanoid robot from captured human dances,” in Proc. of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan, vol.3, pp. 3905 – 3910, Sep.14 - 19 2003.
    [18] E. S. Neo, Y. Kazuhito, K. Shuuji and T. Kazuo, “Whole-body motion generation integrating operator’s intention and robot’s autonomy in controlling humanoid robots,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 763 – 775, Aug. 2007.
    [19] A. M. Sabatini, “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 7, pp. 1346 – 1356, Jul. 2006.
    [20] P. J. Escamilla-Ambrosio and N. Mort, “A hybrid Kalman filter-fuzzy logic architecture for multisensor data fusion,” in Proc. of the 2001 IEEE International Symposium on intelligent Control, Mexico, Sep. 5- 7 2001.
    [21] C. E. Hutchinson and J. H. Fagan, “Kalman filter design considerations for space-stable inertial navigation systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-9, no. 2, pp. 306 – 319, Mar. 1973.
    [22] D. Roetenberg, P. J. Slycke and P. H. Veltink, “Ambulatory position orientation tracking fusing magnetic and inertial sensing,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 5, May 2007.
    [23] H. Liu and G. Pang, “Accelerometer for mobile robot positioning,” IEEE Transactions on Industry Applications, vol. 37, no. 3, May/Jun. 2001.
    [24] K. S. Fu, R. C. Gonzales and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence, McGraw-Hill Book Company, 1987.
    [25] E. P. Hanavan, “A mathematical model of the human body,” AMRL. Technical Report 64-102. Wright-Patterson Air Force Base, OH. 1964.
    [26] H. M. Schepers, H. F. J. M. Koopman and P. H. Veltink, “Ambulatory assessment of ankle and foot dynamics,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 5, pp. 895 – 902, May 2007.
    [27] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Transactions on Robotics, vol. 21, no. 5, pp.977 – 984, Oct. 2005.
    [28] S. K. Agrawal and A. Fattah, “Motion control of a novel planar biped with nearly linear dynamics,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 2, pp.162 – 168, Apr. 2006.
    [29] Y. Hurmuzlu, F. Génot and B. Brogliato, “Modeling, stability and control of biped robots-a general framework,” Automatica, vol. 40, no. 10, pp. 1647 – 1664, 2004.
    [30] S. L. Dockstader, M. J. Berg and A. M. Tekalp, “Stochastic kinematic modeling and feature extraction for gait analysis,” IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 962 – 976, Aug. 2003.
    [31] I. P. I. Pappas, “A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole,” IEEE Sensors Journal, vol. 4, no. 2, pp. 268 – 274, Apr. 2004.
    [32] L. Wang, H. Ning, T. Tan and W. Hu, “Fusion of static and dynamic body biometrics for gait recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 2, pp. 149 – 158, Feb. 2004.

    下載圖示 校內:2018-08-07公開
    校外:2018-08-07公開
    QR CODE