簡易檢索 / 詳目顯示

研究生: 張耀元
Chang, Yao-Yuan
論文名稱: 研究二維層狀鈣鈦礦Ruddlesden–Popper相鈣錳鈮酸鹽(n=4,5,6)奈米片在太陽能水分解元件之應用
Study of B-Site Substituted Two-Dimensional Ruddlesden–Popper Phase Can-1Mnn-3Nb3O3n+12- (n=4,5,6) Perovskite Nanosheets for Solar Water-Splitting Applications
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 智慧與永續製造學位學程
Program on Smart and Sustainable Manufacturing
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 141
中文關鍵詞: 二維鈣鈦礦奈米片B-site取代水分解鐵磁性過渡金屬氧化物小球藻自旋極化電子
外文關鍵詞: Two-dimensional perovskite nanosheet, B-site substitution, water-splitting, ferromagnetism transition metal oxides, Chlorella vulgaris, spin-polarized electrons
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一種基於固態合成的嶄新系列取代B位置之不同分子層數厚度的二維鈣鈦礦Ruddlesden–Popper相 Can-1Mnn-3Nb3O3n+12- (CMNO2-) 奈米片狀材料,可應用於太陽光電水分解產氫氣和自旋電子裝置中。我們採用了位於第一過渡系的過渡金屬-錳Mn原子取代部分八面體鈣鈦礦結構中的鈮酸鹽 (NbO6) B-Site之Nb 元素位置,成功地合成出Ruddlesden–Popper相的二維層狀鈣鈦礦家族結構。這些奈米片的晶體結構、形態和光學特性與寬能隙(3.02~3.23eV)的特性,使其在高效氫氣生產方面的潛在應用,以實現永續能源技術。本研究將合成出不同層數(n = 4、5、6)的Ruddlesden-Popper (RP) 相Can-1Mnn-3Nb3O3n+12- (CMNO2-) 鈣鈦礦奈米片進行了系統探索,透過取代B位置和化學剝離方法來調整其物理化學性質和催化性能。其中CMNO2-(n =6)分子層數的奈米片有最優異的產氫效率。將CMNO2-奈米片與導電聚合物PEDOT:PSS複合形成p-n接面可有效增強產氫效率,在一種增強其光吸收的新方法中,小球藻微藻被塗覆於CMNO2- 奈米片與PEDOT:PSS複合形成的p-n接面電極上,在起始電位和電流密度方面,皆表現出顯著的改善,特別是對於CMNO2- (n = 6 )的電極試片。
    此外,進一步研究鐵磁性過渡金屬氧化物與其層狀奈米片磁性轉變特性和施加外部磁場來提高光催化性能,室溫下可藉由外加電場調控磁性,其自旋極化電子提供了提高光催化電解水產氫之有效策略。使用雷射光圓偏振極化(ħ/-ħ)進行水分解產氫的研究,透過磁性(Mn)元素的協同摻雜和自旋極化,增加了光激發載流子的數量,從而延長了載流子壽命並抑制了電荷複合。結果表明磁性斯格明子(skyrmion)可形成於取代B位置之Can-1Mnn-3Nb3O3n+12-二維鈣鈦礦過渡金屬氧化物之n = 6分子層數厚度的奈米片中,操縱光催化半導體中的自旋極化電子可應用於未來永續能源中。此實驗顯示CMNO2-二維鈣鈦礦奈米片可應用於光催化電解水產氫裝置。

    A neoteric B-site series of Ruddlesden-Popper phases based on solid-state synthesis, consisting of varying molecular thicknesses numbers, denoted as Can-1Mnn-3Nb3O3n+12- (n=4,5,6) nanosheets, has been successfully synthesized. These nanosheets can be applied in solar photocatalytic water splitting for hydrogen production and spintronic devices. We successful synthesis of Ruddlesden-Popper phase layered perovskites by partially substituting niobium in the octahedral NbO6 structure with transition metal manganese atoms, located at the B-site. The properties of these nanosheets, characterized by wide bandgaps (3.02~3.23 eV), demonstrate their potential application in efficient hydrogen production for sustainable energy technologies. This study explores different layer numbers of Can-1Mnn-3Nb3O3n+12- (CMNO2-) to adjust their physicochemical properties and catalytic performance through B-site substitution and exfoliation methods. Among them, CMNO2- (n=6) nanosheets exhibit superior hydrogen evolution efficiency. Incorporating CMNO2- nanosheets with the conductive polymer PEDOT:PSS to form p-n junctions effectively enhances hydrogen production. A novel approach to enhance light absorption involves coating Chlorella vulgaris microalgae onto CMNO2- nanosheets electrode surface, leading to significant improvements in onset potential and current density, particularly for CMNO2- (n=6) nanosheets. Furthermore, the study investigates ferromagnetism transition metal oxides and its magnetic transition properties with dependance increasing layered numbers. External magnetic fields and manipulating magnetic properties at room temperature by applying an external electric field provides an effective strategy for enhancing photocatalytic performance by spin-polarized electrons. Circularly polarized light is used for hydrogen evolution, increasing spin-polarized photoexcited carriers, extending carrier lifetimes, and suppressing charge recombination. Results indicate the formation of magnetic skyrmions within CMNO2- (n=6) nanosheets, suggesting that manipulating spin-polarized electrons in photocatalytic semiconductors can be applied to future sustainable energy production. CMNO2- nanosheets show promising applications in solar photocatalytic water splitting for hydrogen production.

    摘要 ii 誌謝 xxix 目錄 xxx 表目錄 xxxiii 圖目錄 xxxiv 第一章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機 3 第二章 文獻回顧 4 2.1 鈣鈦礦結構 4 2.2 二維層狀鈣鈦礦家族 7 2.3合成二維奈米片材料的製程 9 2.4太陽能光電化學產氫水分解(PEC)實驗 11 2.4.1光催化半導體與水分解產氫反應 13 2.5光合微生物 (小球藻) 14 2.6磁性材料 16 2.6.1磁性二維過渡金屬氧化物特殊特徵 22 2.6.2磁性斯格明子產生的機制 24 2.7自旋電子學應用裝置 26 第三章 研究方法 28 3.1 實驗材料 29 3-1-1 實驗藥品介紹 29 3.2 實驗流程 30 3-2-1 合成Ruddlesden–Popper相的CMNO2-二維層狀鈣鈦礦奈米片 30 3-2-2 製備太陽光電水分解之電極試片 33 3.3 光催化電解水產氫機制與DFT模擬 34 第四章 實驗分析方法 35 4-1 表面形貌與晶體結構分析 35 4-1-1 X射線繞射 (XRD) 量測 35 4-1-2 掃描電子顯微鏡 (SEM) 量測 37 4-1-3 螢光顯微鏡 (Fluorescence Microscope) 量測 39 4-1-4 高解析穿透式電子顯微鏡 (TEM) 量測 40 4-1-5 原子力顯微鏡 (AFM) 量測 42 4-1-6 磁力顯微鏡 (MFM) 量測 44 4-2 光學特性分析 46 4-2-1 紫外-可見光光譜 (UV-vis spectrum) 量測 46 4-2-2 傅立葉變換紅外光譜 (FTIR) 量測 48 4-3 化學特性分析 50 4-3-1 X射線光電子能譜(XPS)量測 50 4-3-2 紫外光電子能譜 (UPS) 量測 51 4-3-3 第一原理模擬計算 (DFT) 52 4-3-4 電化學分析儀的量測 53 4-4 磁性特性分析 55 4-4-1 超導量子干涉儀 (SQUID) 磁特性量測 55 4-4-2 HAADF- STEM真實空間拓撲磁紋理量測 57 4-5 太陽能水分解產氫裝置 58 第五章 結果與討論 60 5-1 前驅物粉末XRD晶體結構分析 60 5-2 前驅物粉末的掃描式電子顯微鏡 SEM分析 62 5-3 CMNO2-二維層狀鈣鈦礦奈米片TEM分析 63 5-4 CMNO2-二維層狀鈣鈦礦奈米片AFM 分析 68 5-5 CMNO2-二維層狀鈣鈦礦奈米片MFM 分析 69 5-6 小球藻(Chlorella vulgaris)微藻螢光顯微鏡分析 70 5-7 實驗材料的光學特性分析 70 5-8實驗材料的化學特性分析 74 5-9實驗材料的光電化學產氫效率分析 83 5-10實驗材料的磁性特性分析 88 第六章 結論 95 第七章 參考資料 96

    1. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2022 – Impacts, Adaptation and Vulnerability, Cambridge University Press, 2023. https://doi.org/10.1017/9781009325844.
    2. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strategy Reviews 24 (2019) 38–50. https://doi.org/10.1016/j.esr.2019.01.006.
    3. M. Wang, Z. Wan, Z. Li, C. Jia, W. Zhang, Q. Hu, W. Huang, C. Li, X. Gui, Z. Li, Full spectrum solar hydrogen production by tandems of perovskite solar cells and photothermal enhanced electrocatalysts, Chemical Engineering Journal 460 (2023) 141702. https://doi.org/10.1016/j.cej.2023.141702.
    4. A.M.K. Fehr, A. Agrawal, F. Mandani, C.L. Conrad, Q. Jiang, S.Y. Park, O. Alley, B. Li, S. Sidhik, I. Metcalf, C. Botello, J.L. Young, J. Even, J.C. Blancon, T.G. Deutsch, K. Zhu, S. Albrecht, F.M. Toma, M. Wong, A.D. Mohite, Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%, Nat Commun 14 (2023) 3797. https://doi.org/10.1038/s41467-023-39290-y.
    5. J. Deng, J. Li, Z. Yang, M. Wang, All-inorganic lead halide perovskites: a promising choice for photovoltaics and detectors, J Mater Chem C Mater 7 (2019) 12415–12440. https://doi.org/10.1039/C9TC04164H.
    6. J. Deng, J. Li, Z. Yang, M. Wang, All-inorganic lead halide perovskites: a promising choice for photovoltaics and detectors, J Mater Chem C Mater 7 (2019) 12415–12440. https://doi.org/10.1039/C9TC04164H.
    7. J. Hwang, K. Maharjan, H. Cho, A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges, Int J Hydrogen Energy 48 (2023) 28629–28648. https://doi.org/10.1016/j.ijhydene.2023.04.024.
    8. F. Eljack, M.-K. Kazi, Prospects and Challenges of Green Hydrogen Economy via Multi-Sector Global Symbiosis in Qatar, Frontiers in Sustainability 1 (2021). https://doi.org/10.3389/frsus.2020.612762.
    9. M. Mehrpooya, B. Ghorbani, M. Khodaverdi, Hydrogen production by thermochemical water splitting cycle using low‐grade solar heat and phase change material energy storage system, Int J Energy Res 46 (2022) 7590–7609. https://doi.org/10.1002/er.7662.
    10. J. Chen, Q. Li, L. Wang, C. Fan, H. Liu, Advances in Whole‐Cell Photobiological Hydrogen Production, Adv Nanobiomed Res 1 (2021). https://doi.org/10.1002/anbr.202000051.
    11. R.D. Tentu, S. Basu, Photocatalytic water splitting for hydrogen production, Curr Opin Electrochem 5 (2017) 56–62. https://doi.org/10.1016/j.coelec.2017.10.019.
    12. K.A. Davis, S. Yoo, E.W. Shuler, B.D. Sherman, S. Lee, G. Leem, Photocatalytic hydrogen evolution from biomass conversion, Nano Converg 8 (2021) 6. https://doi.org/10.1186/s40580-021-00256-9.
    13. K. Villa, J.R. Galán-Mascarós, N. López, E. Palomares, Photocatalytic water splitting: advantages and challenges, Sustain Energy Fuels 5 (2021) 4560–4569. https://doi.org/10.1039/D1SE00808K.
    14. C. Qin, L. Xu, Z. Zhou, J. Song, S. Ma, Z. Jiao, Y. Jiang, Carrier dynamics in two-dimensional perovskites: Dion–Jacobson vs. Ruddlesden–Popper thin films, J Mater Chem A Mater 10 (2022) 3069–3076. https://doi.org/10.1039/D1TA09549H.
    15. T. Tabari, M. Ebadi, D. Singh, B. Caglar, M.B. Yagci, Efficient synthesis of perovskite-type oxide photocathode by nonhydrolytic sol-gel method with an enhanced photoelectrochemical activity, J Alloys Compd 750 (2018) 248–257.
    16. H. Xiao, P. Liu, W. Wang, R. Ran, W. Zhou, Z. Shao, Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment, Mater Today Energy 23 (2022) 100899. https://doi.org/10.1016/j.mtener.2021.100899.
    17. Abhispa Bora a, K. Mohanrasu a, T. Angelin Swetha a, V. Ananthi a,b, Raveendran Sindhu c,Nguyen Thuy Lan Chi d, Arivalagan Pugazhendhi e, A. Arun a,*, Thangavel Mathimani f, Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production, Fuel Volume 328, 15 November 2022, 125269.https://doi.org/10.1016/j.fuel.2022.125269.
    18. Qian Yang a, Xin Tong a,b,*, Zhiming Wang a,b,c,**, Progress in manipulating spin polarization for solar hydrogen production, Materials Reports: EnergyVolume 4, Issue 1, February 2024, 100253, https://doi.org/10.1016/j.matre.2024.100253
    19. Sourav Dutta *1, Dmitri E. Nikonov 2,George Bourianoff 3, Sasikanth Manipatruni 2, Ian A. Young 2, and Azad Naeemi 1, Skyrmion nucleation via localized spin current injection in confined nanowire geometry in low chirality magnetic materials, Mesoscale and Nanoscale Physics, https://doi.org/10.48550/arXiv.1801.10525
    20. Eman Abdul Rahman Assirey, Perovskite synthesis, properties and their related biochemical and industrial application, Saudi Pharmaceutical Journal Volume 27, Issue 6, September 2019, Pages 817-829, https://doi.org/10.1016/j.jsps.2019.05.003
    21. Christopher M. Handley,a Robyn E. Ward,a,b Colin L. Freeman,a Ian M. Reaney,aDerek C. Sinclaira and John H. Hardinga*, Dynamic tilting in perovskites, Foundations and Advances,https://doi.org/10.1107/S2053273322011949
    22. Pankaj P. Khirade and Anil V. Raut, Perovskite Structured Materials: Synthesis, Structure, Physical Properties and Applications, Recent Advances in Multifunctional Perovskite Materials, DOI: 10.5772/intechopen.106252
    23. Silvie Švarcová a, Kjell Wiik a, Julian Tolchard a, Henny J.M. Bouwmeester b , Tor Grande a,⁎, Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ, Solid State Ionics 178 (2008) 1787–1791, https://doi.org/10.1016/j.ssi.2007.11.031
    24. Elisabeth K. Albrecht and Antti J. Karttunen, Investigation on the predictive power of tolerance factor τ for A-site double perovskite oxides†, The Royal Society of Chemistry 2023, DOI: 10.1039/D3DT01990J (Paper) Dalton Trans., 2023, 52, 12461-12469
    25. Lixiu Zhang1,2, Luyao Mei6, Kaiyang Wang8, Yinhua Lv5, Shuai Zhang9, Yaxiao Lian10, Xiaoke Liu3 , Zhiwei Ma11, Guanjun Xiao11, QiangLiu7, Shuaibo Zhai12, Shengli Zhang9, Gengling Liu13, Ligang Yuan14, Bingbing Guo10, Ziming Chen15, Keyu Wei16, Aqiang Liu17, Shizhong Yue18, Guangda Niu19, Xiyan Pan1,2, Jie Sun1,2, Yong Hua5, Wu-Qiang Wu13, Dawei Di10, Baodan Zhao10, Jianjun Tian17, ZhijieWang18, Yang Yang10, Liang Chu20, Mingjian Yuan16, Haibo Zeng9, Hin-Lap Yip21, Keyou Yan14, Wentao Xu7 *, Lu Zhu6 *, Wenhua Zhang5 *, Guichuan Xing4 *, Feng Gao3 *, Liming Ding1 ,Advances in the Application of Perovskite Materials,Nano-Micro Lett. (2023)15:177,ttps://doi.org/10.1007/s40820-023-01140-3
    26. V. Rosendal,1 W. H. Brito,2 M. Radovic,3 A. Chikina,3 M. Brandbyge,4 N. Pryds,1 and D. H. Petersen1, Octahedral distortions in SrNbO3: Unraveling the structure-property relation, Materials Science, https://doi.org/10.48550/arXiv.2303.08862
    27. Yuchao Hu a,b,c,1, Liuhao Mao a,1 , Xiangjiu Guan a, Kevin Andrew Tucker a, Huling Xie c,Xuesong Wu c, Jinwen Shi a,* Layered perovskite oxides and their derivative nanosheets adopting different modification strategies towards better photocatalytic performance of water splitting, Renewable and Sustainable Energy Reviews, https://doi.org/10.1016/j.rser.2019.109527
    28. Hitomi Yano, Akihisa Aimi, Nobuyuki Sakai, Takayoshi Sasaki, and Kenjiro Fujimoto*, Single-Crystal Growth of Layered Birnessite-Type Manganese Oxides and Their Delamination into MnO2 Nanosheets,Cryst. Growth Des. 2022, 22, 1, 625–632, https://doi.org/10.1021/acs.cgd.1c01171
    29. Shahinoor Alam a, Mohammad Asaduzzaman Chowdhury a,*, Abdus Shahid b, Rubel Alam c,Abdur Rahim d, Synthesis of emerging two-dimensional (2D) materials- Advances, challenges and prospects, FlatChem Volume 30, November 2021, 100305,https://doi.org/10.1016/j.flatc.2021.100305
    30. Yao Yin, Xinyu Shi, Chunli Wang, Xu Zhang, Dawei Zhou, Si Li, Kan Liao, Jiaxiao Yuan, Guixiang Zhan, Jiahao He, Yuyang Hua, Lin Wang, and Xuefen Song*,Space-Confined Chemical Vapor Deposition Synthesis of AllInorganic CsSnI3 Perovskite Nanosheets,The Journal of Physical Chemistry C, https://doi.org/10.1021/acs.jpcc.4c01819
    31. Renzhi Ma and Takayoshi Sasaki*,Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality, Accounts of Chemical Research, https://doi.org/10.1021/ar500311w
    32. Chen-Xia Hu, Yuyoung Shin, Oliver Read and Cinzia Casiraghi *,Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene, Nanoscale, 2021, 13, 460, DOI: 10.1039/d0nr05514j
    33. Hitomi Yano, Akihisa Aimi, Nobuyuki Sakai, Takayoshi Sasaki, and Kenjiro Fujimoto*, Single-Crystal Growth of Layered Birnessite-Type Manganese Oxidesand Their Delamination into MnO2 Nanosheets, Cryst. Growth Des. 2022, 22, 625−632, https://doi.org/10.1021/acs.cgd.1c01171
    34. Jalal Azadmanjiri, *a Vijay K. Srivastava,b Parshant Kumar,b James Wang a and Aimin Yu *a, Graphene-supported 2D transition metal oxide heterostructures, : J. Mater. Chem. A, 2018, 6,13509, DOI: 10.1039/c8ta03404d
    35. M. El ouardi a,b, A. El Idrissi c , M. Arab b,**, M. Zbair d,e, H. Haspel f,g,M. Saadi a, H. Ait Ahsaine a, ,Review of photoelectrochemical water splitting:From quantitative approaches to effect of sacrificial agents, oxygen vacancies, thermal and magnetic field on (photo)electrolysis,International Journal of Hydrogen Energy Volume 51, Part B, 2 January 2024, Pages 1044-1067, https://doi.org/10.1016/j.ijhydene.2023.09.111
    36. Amir Memar a,b,*, Chi M. Phan b , Moses O. Tade b, Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode, International Journal of Hydrogen Energy Volume 40, Issue 28, 27 July 2015, Pages 8642-8649, https://doi.org/10.1016/j.ijhydene.2015.05.016
    37. Tingting Yao, Xiurui An, Hongxian Han, John Qianjun Chen, and Can Li*, Photoelectrocatalytic Materials for Solar Water Splitting, Advanced Energy Materials Excellence in Energy, https://doi.org/10.1002/aenm.201800210
    38. Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher,† Qixi Mi, Elizabeth A. Santori,and Nathan S. Lewis*,Solar Water Splitting Cells, Chem. Rev. 2010, 110, 11, 6446–6473 Publication Date:November 10, 2010, https://doi.org/10.1021/cr1002326
    39. Si Yin Tee, Khin Yin Win, Wee Siang Teo, Leng-Duei Koh, Shuhua Liu, Choon Peng Teng, and Ming-Yong Han*,Recent Progress in Energy-Driven Water Splitting, Adv. Sci. 2017, 4, 1600337, DOI: 10.1002/advs.201600337
    40. Hanan H. Mohamed, Green processes and sustainable materials for renewable energy production via water splitting, Sustainable Materials and Green Processing for Energy Conversion 2022, Pages 169-212, https://doi.org/10.1016/B978-0-12-822838-8.00007-7
    41. Eleftherios Touloupakis a, Cecilia Faraloni b, Ana Margarita Silva Benavides c,d, Jirı´ Masojı´dek e, Giuseppe Torzillo b,d, Sustained photobiological hydrogen production by Chlorella vulgaris without nutrient starvation, International Journal of Hydrogen Energy Volume 46, Issue 5, 19 January 2021, Pages 3684-3694, https://doi.org/10.1016/j.ijhydene.2020.10.257
    42. Anastasios Melis∗, Matthew R. Melnicki, Integrated biological hydrogenproduction,International Journal of Hydrogen Energy 31 (2006) 1563–1573, doi:10.1016/j.ijhydene.2006.06.038
    43. Abhispa Bora a, K. Mohanrasu a, T. Angelin Swetha a, V. Ananthi a,b , Raveendran Sindhu c,Nguyen Thuy Lan Chi d, Arivalagan Pugazhendhi e , A. Arun a,*, Thangavel Mathimani f,* Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production,Fuel Volume 328, 15 November 2022, 125269, https://doi.org/10.1016/j.fuel.2022.125269
    44. Kaipian Shia,1, Juan Wanga,1, Li Yina, Ying Xua, Desheng Konga, Hongxiang Lia, Yong Zhangd, Youru Yaof, Huan Hea, Shaogui Yanga, Lixiao Nib,c, Shiyin Lia,e,* Efficient synergistic degradation of tetracycline hydrochloride by protonated g-C3N4 and Chlorella pyrenoidosa: Kinetics and mechanism, Chemical Engineering Journal Volume 462, 15 April 2023, 142331,https://doi.org/10.1016/j.cej.2023.142331 Get rights and content
    45. Syed Ismail Ahmad ,Nano cobalt ferrites: Doping, Structural, Low-temperature, and room temperature magnetic and dielectric properties – A comprehensive review, Journal of Magnetism and Magnetic Materials , https://doi.org/10.1016/j.jmmm.2022.169840
    46. Bruce M. Moskowitz for the Environmental Magnetism Workshop held 5-8 June 1991 at the Institute for Rock Magnetism ,Hitchhiker's Guide to Magnetism Bruce M. Moskowitz, https://cse.umn.edu/irm/2-classes-magnetic-materials
    47. Irfan Hussain Lone1* , Jeenat Aslam1 , Nagi R. E. Radwan1, Ali Habib Bashal2, Amin F. A. Ajlouni1 and Arifa Akhter3, Multiferroic ABO3 Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism,Lone et al. Nanoscale Research Letters (2019) 14:142 https://doi.org/10.1186/s11671-019-2961-7
    48. Shuqing Zhang, a,b Runzhang Xu, a Nannan Luoc and Xiaolong Zou *a,Two-dimensional magnetic materials: structures,properties and external controls,Nanoscale, 2021, 13, 1398, DOI: 10.1039/d0nr06813f
    49. Hang Xu1,# , Shengjie Xu1,# , Xun Xu2,3 , Jincheng Zhuang1 , Weichang Hao1,3 , Yi Du1,3, Recent advances in two-dimensional van der Waals magnets, Xu et al. Microstructures 2022;2:2022011 DOI: 10.20517/microstructures.2022.02
    50. Ian D. Fawcett, Joseph E. IV Sunstrom, Martha Greenblatt, Mark Croft, K. V. Ramanujachary, ChemInform Abstract: Structure, Magnetism, and Properties of Ruddlesden—Popper Calcium Manganates Prepared from Citrate Gels, Physical Inorganic Chemistry 17 June 2010, https://doi.org/10.1002/chin.199905007
    51. Lev P. Gor’kova,b, Vladimir Z. Kresinc,∗, Mixed-valence manganites: fundamentals and main properties, Physics Reports 400 (2004) 149 – 208, https://doi.org/10.1016/j.physrep.2004.08.003
    52. Jan Seidel ,* Rama K. Vasudevan , and Nagarajan Valanoor*, Topological Structures in Multiferroics – Domain Walls, Skyrmions and Vortices, Adv. Electron. Mater. 2016, 2, 1500292, https://doi.org/10.1002/aelm.201500292
    53. Chenhui Zhang, Chen Liu, Senfu Zhang, Bojian Zhou, Chaoshuai Guan, Yinchang Ma, Hanin Algaidi, Dongxing Zheng, Yan Li, Xin He, Junwei Zhang, Peng Li, Zhipeng Hou, Gen Yin, Kai Liu, Yong Peng,* and Xi-Xiang Zhang*,Magnetic Skyrmions with Unconventional Helicity Polarization in a Van Der Waals Ferromagnet, Adv. Mater. 2022, 34, 2204163, DOI: 10.1002/adma.202204163
    54. Miladina R. Aziza, Chia-Wei Chang, Chao-Cheng Kaun*, and Yen-Hsun Su*, Hydrogen Evolution Driven by Photoexcited Entangled Skyrmion on Perovskite Ca2Nan–3NbnO3n+1 Nanosheet, The Journal of Physical Chemistry Letters 2021, 12, 26, 6244-6251, DOI: 10.1021/acs.jpclett.1c01490
    55. Yusuke Shibuta a , Takuya Hasegawa b , Sun-Woog Kim c , Kazuyoshi Uematsu a , Kenji Toda a, * , Mineo Sato d, Mild condition synthesis without high temperature process of Eu2+-doped barium orthosilicate nanophosphor via Water-Assisted Solid-State Reaction (WASSR) method, Journal of Alloys and Compounds 788 (2019) 1009e1012, https://doi.org/10.1016/j.jallcom.2019.02.295
    56. Archana Kaliyaraj Selva Kumar 1 , Yifei Zhang 1 , Danlei Li , Richard G. Compton *, A mini-review: How reliable is the drop casting technique?, Electrochemistry Communications Volume 121, December 2020, 106867, https://doi.org/10.1016/j.elecom.2020.106867
    57. Alberto Mezzetti1,2 • Winfried Leibl2, Time-resolved infrared spectroscopy in the study of photosynthetic systems, Photosynth Res (2017) 131:121–144, DOI 10.1007/s11120-016-0305-3
    58. Grimmgroup, Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, XPS and UPS Background, https://grimmgroup.net/research/xps/background/
    59. K. Domen a, J. Yoshimura a, T. Sekine a, J. Kondo a, A. Tanaka b, K. Maruya a, T. Onishi a, A Novel Series of Photocatalysts with an Ion-Exchangeable Layered Structure of Niobate, Studies in Surface Science and Catalysis Volume 75, 1993, Pages 2159-2162, https://doi.org/10.1016/S0167-2991(08)64250-0
    60. Calin Ladasiu ab, Natalia Kulischow a and Roland Marschall‡ *a, Tuning the photocatalytic activity of layered perovskite niobates by controlled ion exchange and hydration, Catal. Sci. Technol., 2022, 12, 1450-1457, DOI: 10.1039/D1CY02057A
    61. Miladina R. Aziza, Chia-Wei Chang, Anisha Mohapatra, Chih-Wei Chu, Chao-Cheng Kaun and Yen-Hsun Su, Dion–Jacobson Phase Perovskite Ca2Nan–3NbnO3n+1– (n = 4–6) Nanosheets as High-κ Photovoltaic Electrode Materials in a Solar Water-Splitting Cell, ACS Applied Nano MaterialsVolume 3, Issue 7July 24, 2020Pages6127-7304, DOI:10.1021/acsanm.0c00747
    62. Minoru Osada *ab and Takayoshi Sasaki *ab, Exfoliated oxide nanosheets: new solution to nanoelectronics, J. Mater. Chem., 2009, 19, 2503-2511, DOI: 10.1039/B820160A
    63. Guosheng Shao*, Work Function and Electron Affinity of Semiconductors: Doping Effect and Complication due to Fermi Level Pinning, Energy Environ. Mater. 2021, 4, 273–276, DOI: 10.1002/eem2.12218
    64. Juliusz Sworakowski, How accurate are energies of HOMO and LUMO levels in small-molecule organic semiconductors determined from cyclic voltammetry or optical spectroscopy?, Synthetic Metals Volume 235, January 2018, Pages 125-130, https://doi.org/10.1016/j.synthmet.2017.11.013
    65. Thi Bao Ngoc Le, Chia-Wei Chang, Yen-Hsun Su *, Hydrogen generation ability of B-site substituted two-dimensional Can-1Tin-3Nb3O3n+1 − perovskite nanosheets in photoelectrochemical cell, Surfaces and Interfaces Volume 36, February 2023, 102623, https://doi.org/10.1016/j.surfin.2022.102623
    66. Harshad Gajapathy, a Savini Bandaranayake,a Emily Hruska,a Aravind Vadakkayil,b Brian P. Bloom,b Stephen Londo, a Jackson McClellan,a Jason Guo,c Daniel Russell,c Frank M. F. de Groot,d Fengyuan Yang,c David H. Waldeck, b Martin Schultzee and L. Robert Baker *a, Spin polarized electron dynamics enhance water splitting efficiency by yttrium iron garnet photoanodes: a new platform for spin selective photocatalysis, : Chem. Sci., 2024, 15, 3300, DOI: 10.1039/d3sc03016d
    67. Institute of Applied Physics and Interdisciplinary Nanoscience Center Hamburg, University of Hamburg, D-20355 Hamburg, Germany, Spin mapping at the nanoscale and atomic scale, REVIEWS OF MODERN PHYSICS, VOLUME 81, OCTOBER–DECEMBER 2009, DOI: 10.1103/RevModPhys.81.1495

    無法下載圖示 校內:2029-08-15公開
    校外:2029-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE