簡易檢索 / 詳目顯示

研究生: 陳頤
Chen, Yi
論文名稱: 鍶不足對摻鑭鈦酸鍶塊材熱電性質之影響
Effects of Sr deficiency on thermoelectric properties of La-doped strontium titanate bulks
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 熱電材料鈦酸鍶鍶不足
外文關鍵詞: thermoelectric, SrTiO3, Sr-deficiency
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料透過溫差即可將熱能與電能轉換,為一種受到期待的功能材料。熱電材料在溫差發電及熱電致冷方面都具有廣泛的應用價值,其中陶瓷熱電材料具有成本低廉、無毒、無污染等之優點,是深受期待的材料。而陶瓷材料中之鈦酸鍶是功能性非常多元的材料,具有介電常數高、Seebeck係數高、熱穩定性好等之優點,是被期待的熱電材料之一。
    稀土元素的摻雜為提升鈦酸鍶熱電性質的常見手段,其中以鑭摻雜之鈦酸鍶在前人的研究中具有最佳熱電性質。此外,鍶與鈦的計量調整為改善鈦酸鍶熱電性質的一個新方向,當鍶不足時材料內會產生鍶空缺,進而影響鈦酸鍶的熱電性質。
    因此,本研究以鍶不足量的摻鑭鈦酸鍶為研究材料,實驗以固相反應法合成不同粉體,將粉體成型後於氬氫還原氣氛(Ar-5% H2)中以1450 ℃燒結4小時成為Sr0.92-xLa0.08TiO3-δ (x = 0-0.15) 塊材,並檢討鍶不足塊材之結晶相、微結構、電傳導與熱傳導特性及熱電性質的影響。
    結晶相及顯微結構方面,鍶不足有助於晶粒的成長,當鍶不足≥ 0.1 at.%時,摻鑭鈦酸鍶中會出現均勻散佈之奈米TiOx第二相的顆粒,其顆粒粒徑小於100 nm,且過多的鍶不足會影響鈦酸鍶之結晶度。
    電傳導特性方面,隨著鍶不足的增加,電傳導率呈現先增後減的趨勢,顯示微量鍶不足有助於電傳導率之提升,但過量的當鍶不足會出現TiOx第二相的顆粒,造成載子被散射使電傳導率無法進一步再提升。x = 0.05試樣具有最高的功率因子(Power factor),其值約為1.7 mW/m-K2。
    熱傳導率方面,鍶不足形成之奈米TiOx第二相顆粒,能有效的散射聲子,來達到熱傳導率的降低,故試樣x = 0.15具有最低之熱傳導率。綜合各項熱電性質後計算試樣之ZT值,結果顯示鍶不足之諸試樣其ZT值均高於未有鍶不足之試樣,表示鍶不足為提升摻鑭鈦酸鍶熱電性質的有效策略。x = 0.05試樣具有最高ZT值,在673 K時約為0.17,相較於x = 0.00之試樣增加了70 %。

    In this study, nonstoichiometric Sr0.92-xLa0.08TiO3-δ (x = 0−0.15) bulks were prepared to assess the impact of Sr-deficiency on the thermoelectric performance of La-doped strontium. La-doped SrTiO3 powders prepared by 2-step calcination with intermediate regrinding where sintered at 1450 °C for 4 hours in a 5% H2/Ar. The crystal structure and microstructure were confirmed by XRD and SEM, respectively. Separation of a minor secondary Ti-rich phase particles were observed for the x ≥ 0.1 samples, as a compensation for a significant deviation in the A/B site ratio from the stoichiometric value. Thermoelectric properties of bulk samples were investigated over the temperature range of 25°C to 400°C. Sr-deficiency was found to have a noticeable effect on the electrical conductivity, with less significant alteration of Seebeck coefficient. High power factor observed in composition where an appropriate Sr-deficiency was attained. The existence of second phase particles did result in a larger decrease in the thermal conductivity. Consequently, Sr0.87La0.08TiO3 showed the highest the highest figure of merit (ZT)value of ~0.17 at 673 K.

    中文摘要 I Extended Abstract III 致謝 X 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機目的及策略 3 第二章 文獻回顧 6 2-1 熱電效應 6 2-1-1 Seebeck 效應 6 2-1-2 Peltier 效應 7 2-1-3 Thomson 效應 7 2-1-4 熱電優質(Figure of merit)與能源轉換效率 8 2-2 提升熱電材料的方法 10 2-2-1 提升功率因子 10 2-2-2 降低熱傳導率 12 2-3 熱電材料的分類 13 2-3-1 半導體金屬合金型熱電材料 13 2-3-2 Skutterudites 型化合物材料與Clathrates 結構材料 13 2-3-3 Half-Heusler 合金系統 13 2-3-4 陶瓷熱電材料 14 2-4 氧化物熱電材料的簡介 14 2-4-1 P-type氧化物 15 2-4-2 N-type氧化物 17 2-5 熱電材料的發展與應用 19 2-6 鈦酸鍶相關背景及研究動態 21 2-6-1 鈦酸鍶材料的熱電研究與應用 22 2-6-2 鈦酸鍶材料常見的合成與製備方法 26 2-6-3 鈦酸鍶燒結特性相關研究 28 2-7 非計量比鈦酸鍶電性探討之相關文獻 31 第三章 實驗方法與步驟 60 3-1 實驗用藥品及原料 60 3-2 實驗流程 60 3-3 材料性質之分析 61 3-3-1 結晶相鑑定 61 3-3-2 燒結體密度之量測 61 3-3-3 顯微結構之分析與元素分析 61 3-3-4 化學鍵結分析 62 3-4 燒結體熱電性質之分析 63 3-4-1 電傳導率量測 63 3-4-2 Seebeck係數之量測 63 3-4-3 熱傳導率量測 63 第四章 結果與討論 71 4-1 粉體之相鑑定與顯微結構 71 4-2 塊材之相鑑定與顯微結構 71 4-3 塊材之熱電性質 76 4-3-1 電傳導率 76 4-3-2 Seebeck係數 77 4-3-3 功率因子 78 4-3-4 熱傳導率 78 4-3-5 ZT值 79 第五章 結論 97 第六章 未來工作 98 參考文獻 98

    [1] D.M. Rowe, CRC handbook of thermoelectrics, CRC press, (1995).
    [2] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum Dot Superlattice Thermoelectric Materials and Devices, Science, 297, 2229-2232 (2002).
    [3] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nature materials, 6, 129-134 (2007).
    [4] C.-H. Kuo, H.-S. Chien, C.-S. Hwang, Y.-W. Chou, M.-S. Jeng, M. Yoshimura, Thermoelectric properties of fine-grained PbTe bulk materials fabricated by cryomilling and spark plasma sintering, Materials transactions, 52, 795-801 (2011).
    [5] J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices, Journal of Materials Research, 32, 183-203 (2016).
    [6] J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion, Journal of the European Ceramic Society, 32, 525-540 (2012).
    [7] N. Okinaka, L. Zhang, T. Akiyama, Thermoelectric Properties of Rare Earth-doped SrTiO3 Using Combination of Combustion Synthesis (CS) and Spark Plasma Sintering (SPS), ISIJ International, 50, 1300-1304 (2010).
    [8] K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, T. Hyeon, Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles, Journal of Materials Chemistry A, 2, 4217-4224 (2014).
    [9] A.D. Aljaberi, J.T.S. Irvine, Ca-substituted, A-site deficient perovskite La0.2Sr0.7TiO3 as a potential anode material for SOFCs, Journal of Materials Chemistry A, 1, 5868-5874 (2013).
    [10] G.J. Snyder, T.S. Ursell, Thermoelectric Efficiency and Compatibility, Physical Review Letters, 91, 148301 (2003).
    [11] J. Hea, Y. Liu, Oxide thermoelectrics: The challenges, progress, and outlook, Journal of materials research, 15, 1762-1772 (2011).
    [12] D.M. Rowe, Thermoelectrics Handbook:Micro to Nano, CRC Press, (2006).
    [13] K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, X.D. Zhou, Thermoelectric Ceramics for Energy Harvesting, Journal of the American Ceramic Society, 96, 1-23 (2013).
    [14] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature Materials, 7, 105-114 (2008).
    [15] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2, 466-479 (2009).
    [16] M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Electronic Transport in Semimetallic Cerium Sulfide, Physical Review, 133, A1143-A1152 (1964).
    [17] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, 321, 554-557 (2008).
    [18] J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, R. Venkatasubramanian, Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity, Applied Physics Letters, 87, 023105 (2005).
    [19] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 451, 163-167 (2008).
    [20] G.S. Nolas, J. Poon, M. Kanatzidis, Recent Developments in Bulk Thermoelectric Materials, MRS Bulletin, 31, 199-205 (2011).
    [21] G.S. Nolas, M. Kaeser, R.T.L. IV, T.M. Tritt, High figure of merit in partially filled ytterbium skutterudite materials, Applied Physics Letters, 77, 1855-1857 (2000).
    [22] V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, D.M. Rowe, Preparation and thermoelectric properties of clathrate compounds, Journal of Applied Physics, 87, 7871-7875 (2000).
    [23] Z. Lu, La doped SrTiO3 Based Oxide Thermoelectrics, A thesis submitted for the degree of Doctor of Philosophy, Department of Materials Science and Engineering, University of Sheffield, (2015).
    [24] S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, K. Kalantar-zadeh, Transition metal oxides – Thermoelectric properties, Progress in Materials Science, 58, 1443-1489 (2013).
    [25] W. Koshibae, K. Tsutsui, S. Maekawa, Thermopower in cobalt oxides, Physical Review B, 62, 6869-6872 (2000).
    [26] M. Karppinen, H. Fjellvåg, T. Konno, Y. Morita, T. Motohashi, H. Yamauchi, Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide, [CoCa2O3]CoO2, Chemistry of Materials, 16, 2790-2793 (2004).
    [27] K. Koumoto, I. Terasaki, R. Funahashi, Complex Oxide Materials for Potential Thermoelectric Applications, MRS Bulletin, 31, 206-210 (2006).
    [28] Y. Wang, N.S. Rogado, R.J. Cava, N.P. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature, 423, 425-428 (2003).
    [29] F. Kenjiro, M. Tadashi, N. Kazuo, High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals, Japanese Journal of Applied Physics, 40, 4644 (2001).
    [30] Y. Wang, Y. Sui, X. Wang, W. Su, X. Liu, Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication, Journal of Applied Physics, 107, 033708 (2010).
    [31] S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, H. Yamada, Synthesis and Thermoelectric Properties of the New Oxide Materials Ca3-xBixCo4O9+δ (0.0 < x < 0.75), Chemistry of Materials, 12, 2424-2427 (2000).
    [32] Y. Wang, Y. Sui, J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, W. Su, High temperature transport and thermoelectric properties of Ag-substituted Ca3Co4O9+δ system, Journal of Alloys and Compounds, 448, 1-5 (2008).
    [33] A. Sotelo, S. Rasekh, M.A. Madre, E. Guilmeau, S. Marinel, J.C. Diez, Solution-based synthesis routes to thermoelectric Bi2Ca2Co1.7Ox, Journal of the European Ceramic Society, 31, 1763-1769 (2011).
    [34] D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, K. Koumoto, Thermoelectrical properties of A-site substituted Ca1−xRexMnO3 system, Journal of Applied Physics, 100, 084911 (2006).
    [35] Y. Wang, Y. Sui, W. Su, High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La,Pr,…,Yb), Journal of Applied Physics, 104, 093703 (2008).
    [36] G. Xu, R. Funahashi, Q. Pu, B. Liu, R. Tao, G. Wang, Z. Ding, High-temperature transport properties of Nb and Ta substituted CaMnO3 system, Solid State Ionics, 171, 147-151 (2004).
    [37] L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, A. Weidenkaff, CaMn1−xNbxO3 (x ≤ 0.08) Perovskite-Type Phases As Promising New High-Temperature n-Type Thermoelectric Materials, Inorganic Chemistry, 47, 8077-8085 (2008).
    [38] Y. Wang, K.H. Lee, H. Ohta, K. Koumoto, Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics, Journal of Applied Physics, 105, 103701 (2009).
    [39] K.H. Kim, S.H. Shim, K.B. Shim, K. Niihara, J. Hojo, Microstructural and Thermoelectric Characteristics of Zinc Oxide-Based Thermoelectric Materials Fabricated Using a Spark Plasma Sintering Process, Journal of the American Ceramic Society, 88, 628-632 (2005).
    [40] K. Park, J.K. Seong, Influence of simultaneous addition of Sb2O3 and SnO2 on thermoelectric properties of Zn1−x−ySbxSnyO prepared by tape casting, Journal of Alloys and Compounds, 464, 1-5 (2008).
    [41] S. Saini, P. Mele, H. Honda, K. Matsumoto, K. Miyazaki, A. Ichinose, Thermoelectric Properties of Al-Doped ZnO Thin Films, Journal of Electronic Materials, 43, 2145-2150 (2014).
    [42] S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Applied thermal engineering, 23, 913-935 (2003).
    [43] F. Stabler, Automotive applications of high efficiency thermoelectrics, Proceedings of High Efficiency Thermoelectric Workshop, 1-26 (2002).
    [44] H.P. Frederikse, Thurber, W. R., Hosler, W. R., Electronic Transport in Strontium Titanate, Physical Review, 134, 442-445 (1964).
    [45] S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature, Applied Physics Letters, 87, 092108 (2005).
    [46] K. Kato, M. Yamamoto, S. Ohta, H. Muta, K. Kurosaki, S. Yamanaka, H. Iwasaki, H. Ohta, K. Koumoto, The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3, Journal of Applied Physics, 102, 116107 (2007).
    [47] C. Yu, M.L. Scullin, M. Huijben, R. Ramesh, A. Majumdar, Thermal conductivity reduction in oxygen-deficient strontium titanates, Applied Physics Letters, 92, 191911 (2008).
    [48] J. Ravichandran, W. Siemons, D.W. Oh, J.T. Kardel, A. Chari, H. Heijmerikx, M.L. Scullin, A. Majumdar, R. Ramesh, D.G. Cahill, High-temperature thermoelectric response of double-doped SrTiO3 epitaxial films, Physical Review B, 82, 165126 (2010).
    [49] W. Kim, R. Wang, A. Majumdar, Nanostructuring expands thermal limits, Nano Today, 2, 40-47 (2007).
    [50] J.-N. Gillet, Y. Chalopin, S. Volz, Atomic-Scale Three-Dimensional Phononic Crystals With a Very Low Thermal Conductivity to Design Crystalline Thermoelectric Devices, Journal of Heat Transfer, 131, 043206-043210 (2009).
    [51] J. Wang, B.-Y. Zhang, H.-J. Kang, Y. Li, X. Yaer, J.-F. Li, Q. Tan, S. Zhang, G.-H. Fan, C.-Y. Liu, L. Miao, D. Nan, T.-M. Wang, L.-D. Zhao, Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping, Nano Energy, 35, 387-395 (2017).
    [52] S. Sõmiya, Hydrothermal Reactions for Materials Science and Engineering: An Overview of Research in Japan, Springer Science & Business Media, (2012).
    [53] J. Hannay, On the artificial formation of the diamond, Proceedings of the Royal Society of London, 30, 450-461 (1879).
    [54] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew, (2012).
    [55] J.O. Eckert, C.C. Hung‐Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, Journal of the American Ceramic Society, 79, 2929-2939 (1996).
    [56] W. Zhu, C. Wang, S. Akbar, R. Asiaie, Fast-sintering of hydrothermally synthesized BaTiO3 powders and their dielectric properties, Journal of Materials Science, 32, 4303-4307 (1997).
    [57] F. Trier, S. Amoruso, D.V. Christensen, A. Sambri, Y.Z. Chen, X. Wang, E. Stamate, R. Bruzzese, N. Pryds, Controlling the conductivity of amorphous LaAlO3/SrTiO3 interfaces by in-situ application of an electric field during fabrication, Applied Physics Letters, 103, 031607 (2013).
    [58] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0 <= x <= 0.1), Physical Review B, 63, 11, (2001).
    [59] S.-L.F. Syh-Yuh Chang, Chung-Chuang Wei, Sintering of SrTiO3 with Li2O3 addition, Ceramic International, 15, 231-236 (1989).
    [60] K.-S. Liu, I.-N. Lin, Enhanced densification of SrTiO3 perovskite ceramics, Ferroelectricity Newsletter, 261-264 (1991).
    [61] S. Cho, P. Johnson, Evolution of the microstructure of undoped and Nb-doped SrTiO3, Journal of Materials Science, 29, 4866-4874 (1994).
    [62] Q. Fu, S. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of European Ceramic Society, 28, 811-820 (2008).
    [63] F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency, Journal of Power Sources, 185, 26-31 (2008).
    [64] L. Amaral, A.M. Senos, P.M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics, Materials Research Bulletin, 44, 263-270 (2009).
    [65] C.N. George, J. Thomas, R. Jose, H.P. Kumar, M. Suresh, V.R. Kumar, P.S. Wariar, J. Koshy, Synthesis and characterization of nanocrystalline strontium titanate through a modified combustion method and its sintering and dielectric properties, Journal of Alloys and Compounds, 486, 711-715 (2009).
    [66] K. Maca, V. Pouchly, Z. Shen, Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics, Integrated Ferroelectrics, 99, 114-124 (2008).
    [67] S. Hui, A. Petric, Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions, Journal of The Electrochemical Society, 149, J1 (2002).
    [68] T. Kolodiazhnyi, A. Petric, The Applicability of Sr-deficient n-type SrTiO3 for SOFC Anodes, Journal of Electroceramics, 15, 5-11 (2005).
    [69] R. Moos, K.H. Härdtl, Electronic transport properties of Sr1−xLaxTiO3 ceramics, Journal of Applied Physics, 80, 393-400 (1996).
    [70] X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie, N. Chen, Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells, International Journal of Hydrogen Energy, 35, 7913-7918 (2010).
    [71] B. Bochentyn, J. Karczewski, T. Miruszewski, A. Krupa, M. Gazda, P. Jasinski, B. Kusz, Donor-substituted SrTi1+xO3−δ anodes for SOFC, Solid State Ionics, 225, 118-123 (2012).
    [72] A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Effect of A-Site Cation Deficiency on the Thermoelectric Performance of Donor-Substituted Strontium Titanate, The Journal of Physical Chemistry C, 118, 4596-4606 (2014).
    [73] S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, J.W.G. Bos, Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies, RSC Advances, 4, 33720-33723 (2014).
    [74] A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting Thermoelectric Performance by Controlled Defect Chemistry Engineering in Ta-Substituted Strontium Titanate, Chemistry of Materials, 27, 4995-5006 (2015).
    [75] C. Chen, T. Zhang, R. Donelson, T.T. Tan, S. Li, Effects of yttrium substitution and oxygen deficiency on the crystal phase, microstructure, and thermoelectric properties of Sr1−1.5xYxTiO3−δ (0⩽x⩽0.15), Journal of Alloys and Compounds, 629, 49-54 (2015).
    [76] Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, I.M. Reaney, High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO3 Ceramics, Chemistry of Materials, 28, 925-935 (2016).
    [77] D. Srivastava, C. Norman, F. Azough, M.C. Schafer, E. Guilmeau, D. Kepaptsoglou, Q.M. Ramasse, G. Nicotra, R. Freer, Tuning the thermoelectric properties of A-site deficient SrTiO3 ceramics by vacancies and carrier concentration, Physical chemistry chemical physics : PCCP, 18, 26475-26486 (2016).
    [78] J. Han, Q. Sun, Y. Song, Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics, Journal of Alloys and Compounds, 705, 22-27 (2017).
    [79] A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms, Journal of Materials Chemistry A, 5, 3909-3922 (2017).
    [80] M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications, Energy & Environmental Science, 5, 5147-5162 (2012).
    [81] L. Amaral, A.M.R. Senos, P.M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics, Materials Research Bulletin, 44, 263-270 (2009).
    [82] K. Park, J.S. Son, S.I. Woo, K. Shin, M.-W. Oh, S.-D. Park, T. Hyeon, Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles, Journal of Materials Chemistry A, 2, 4217-4224 (2014).

    無法下載圖示 校內:2019-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE