簡易檢索 / 詳目顯示

研究生: 蔡佳翰
Tsai, Chia-Han
論文名稱: 串聯和動態輸出迴授控制器之多種採樣數位再設計
Multi-Rate Digital Redesign of Cascaded and Dynamic Output Feedback Controller
指導教授: 蔡聖鴻
Tsai, Sheng-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 39
中文關鍵詞: 多種數率採樣時間數位再設計串聯系統採樣系統
外文關鍵詞: Multi-rate sampling, Digital redesign, Cascaded systems, Sampled-data systems
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種新式間接型的數位再設計方法,適用於串聯和動態輸出迴授系統之多種採樣控制器。這些類比控制器往往用來預測可用的頻率特性,像是頻寬,自然角頻率等等。然而數位控制器比類比控制器優點在於實現較為可取。由於只有輸入輸出訊號可量測時,使用一種理想狀態重建演算法去獲得原始連續系統多種採樣時間的離散狀態。基於切比雪夫正交法則,根據不同採樣時間而使用不同閉迴路系統,使用多種採樣時間串聯和輸出迴授數位控制器的增益來算出連續時間部分。因此,高頻和低頻特性類比控制器可以用來實現相對應的高數率採樣和低數率採樣時間數位控制器。不同於傳統方法的直接雙線性變換,是一種開迴路的數位控制器。本論文所提出的數位控制器有考慮到狀態匹配相對於原始的連續閉迴路系統和數位再設計取樣閉迴路系統。而為了進一步提高狀態匹配的特性,一種改良型的數位再設計方法也被提出來。範例說明,以證明方法的有效性。

    In this thesis, a new indirect digital redesign method is presented for multi-rate sampled-data control systems with cascaded and dynamic output feedback controllers. These analog controllers are often predesigned based on desirable frequency specification, such as the bandwidth, the natural angular frequency, etc. To take advantages of the digital controller over the analog controller, digital implementations of these analog controllers are often desirable. As only measured input-output signals are available, an ideal state reconstructing algorithm is utilized to obtain the multi-rate discrete-time states of the original continuous-time system. Based on the Chebyshev quadrature method, the gains of the multi-rate cascaded and the output feedback digital controllers are determined from their continuous-time counterparts according to the different sampling rates employed in the different parts of the closed-loop system. As a result, the respective analog controllers with the high-frequency and low-frequency characteristics can be implemented using the respective fast-rate sampling and slow-rate sampling digital controllers. Unlike the classical direct bilinear transform method which is an open-loop direct digital redesign method, the proposed digital controllers take into account the state-matching of the original continuous-time closed-loop system and the digitally redesigned sampled-data closed-loop system. To further improve the state-matching performance, an improved digital redesign approach is also developed to construct the multi-rate cascaded and dynamic output feedback digital controllers. Illustrative examples are given to demonstrate the effectiveness of the developed methods.

    中文摘要....................................................I Abstract..................................................II Acknowledgments...........................................IV Chapter 1 Introduction....................................1 Chapter 2 Problem Formulation and Digital Redesign Methods............................................................4 2.1 Digital Redesign Method................................7 2.2 Improved Digital Redesign Method......................11 2.3 Direct Bilinear Transform Method......................12 Chapter 3 Multi-Rate Digital Redesign Technique..........14 3.1 Ideal State Reconstructing Algorithm..................15 3.2 New Multi-Rate Digital Control Law Redesign...........18 Chapter 4 Illustrative Examples..........................24 4.1 Example 4.1...........................................24 4.2 Example 4.2...........................................29 Chapter 5 Conclusion.....................................33 References................................................34 Appendix A Continuous to Discrete Model Conversion for the System with a Singular System Matrix......................37

    [1] Anderson, B. D. O., “Controller design: moving from theory to practice,” IEEE Control Systems Magazine, vol. 4, pp. 16-25,1993.
    [2] Astrom, K. J. and Hagglund, T., PID controllers: theory, design, and tuning, research triangle park, NC: Instrument Society of America, 1995.
    [3] Astrom, K. J. and Wittenmark, B., Computer Controlled Systems, New Jersey: Prentice Hall, 1997.
    [4] Chen, T. and Qiu, L., “ design of general multirate sampled-data control systems”, Automatica, vol. 30, pp. 831-847, 1994.
    [5] Cimino, M. and Pagilla, P. R., “A design technique for multirate linear systems,” IEEE Transactions on Control Systems Technology, vol. 17, pp. 1342-1349, 2007.
    [6] Costin, M. H. and Elzinga, D. R., “Active reduction of low-frequency tire impact noise using digital feedback control,” IEEE Control Systems Magazine, vol. 8, pp. 3-6, 1989.
    [7] Dorf, R. C. and Bishop, R. H., Modern Control Systems, New Jersey: Prentice Hall, 2005.
    [8] Fujimoto, H. and Kawamura, A., “Perfect tracking control based on multi-rate feedback control with generalized sampling periods,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 636-644, 2001.
    [9] Fujimoto, H., Kawamura, A., and Tomizuka, M., “Generalized digital redesign method for linear feedback system based on a n-delay control,” IEEE /ASME Transactions on Mechatronics, vol. 4, pp. 101-109, 1999.
    [10] Glasson, D., “Development and applications of multirate digital control,” IEEE Control Systems Magazine, vol. 11, pp. 2-8, 1983.
    [11] Guo, S. M., Shieh, L. S., Chen, G. R., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
    [12] Huang, C., Frederick, D., and Rimer, M., “CACSD benchmark problem No. 3,” IEEE Control Systems Magazine, vol. 8, pp. 12-14, 1989.
    [13] Kando, H., Yonemoto, Y., and Iwazumi, T., “Multi-rate regulator design of two-time-scale systems via digital redesign method,” International Journal of Systems Science, vol. 24, pp. 691-706, 1993.
    [14] Kranc, G. M., “Input-output analysis of multirate feedback systems,” IRE Transactions on Automatic Control, vol. 3, pp. 21-28, 1957.
    [15] Lee, S. H., “Multirate digital control system design and its application to computer disk drives,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 124-133, 2006.
    [16] Polites, M. E., “Ideal state reconstructor for deterministic digital control system,” International Journal of Control, vol. 49(6), pp. 2001-2011, 1989.
    [17] Ralston, A., A First Course in Numerical Analysis, NY: McGraw-Hill, 1965.
    [18] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23, pp. 839-854, 1992.
    [19] Shieh, L. S., Wang, W. M., and Panicker, A., “Design of PAM and PWM digital controllers for cascaded analog systems,” ISA Transactions, vol. 37, pp. 201-213, 1998.
    [20] Trinh, H., “Linear functional state observer for time-delay systems,” International Journal of Control, vol. 72, pp. 1642-1658, 1999.
    [21] Tsai, J. S. H., Chen, C. M., and Shieh, L. S., “Modelling of multirate feedback systems using uniform-rate models,” Applied Mathematical Modelling, vol. 17, pp. 2-14, 1993.
    [22] Tsay, Y. T., Shieh, L. S., and Tsai, J. S. H., “A fast method for computing the principal nth roots of complex matrices,” Applications of Linear Algebra, vol. 76, pp. 205-221, 1986.
    [23] Wang, H. P., Shieh, L. S., Tsai, J. S. H., and Zhang, Y., “Optimal digital controller and observer design for multiple time-delay transfer function matrices with multiple input-output delays,” International Journal of Systems Science, vol. 39, pp. 461-476, 2008.
    [24] Wang, H. P., Tsai, J. S. H., Yi, Y. I., and Shieh, L. S., “Lifted digital redesign of observer-based tracker for a sampled-data system,” International Journal of Systems Science, vol. 35, pp. 255-271, 2004.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE