簡易檢索 / 詳目顯示

研究生: 黃丙坤
Huang, Bin-Kun
論文名稱: 寬範圍操作之返馳式轉換器一次側控制晶片
Primary-Side Control IC for Flyback Converter with Wide-Range Operation
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 67
中文關鍵詞: 返馳式轉換器DCMCCM一次側控制寬功率範圍
外文關鍵詞: flyback converter, DCM, CCM, PSR, wide power range
相關次數: 點閱:46下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一次側控制返馳式轉換器電路架構當中,輸出電壓及輸出電流皆藉由輔助繞組回授資訊,能減少二次側回授元件使用,以縮小體積、降低成本,及減少回授元件所造成的能量損失。傳統的一次側控制針對非連續導通模式(DCM)提出控制方法,系統電路僅能操作在非連續導通模式,系統在高功率應用時,電流漣波較高,元件上的損耗因而提升。而操作在連續導通模式(CCM),在相同功率下,電流漣波較小,元件損失能有效降低。目前針對一次側返馳式電源轉換器的控制方法,多數僅限於單一操作模式(DCM或CCM)。在DCM控制方法中,於電感電流零點時,偵測輔助繞組上的電壓,估算輸出電壓值,但此方法應用前提是電感電流零點,不適用於CCM。而目前CCM的相關控制方法並不適用於DCM操作,系統電路的功率操作範圍因而限制。而本文提出一控制方法適用於DCM及CCM操作,以達寬功率操作範圍。最後,本控制晶片使用TSMC 0.25 μm CMOS 高壓製程實現並將其應用於一輸入電壓400 V,輸出電壓20 V,輸出功率為150 W的一次側控制返馳式電源轉換器以驗證此控制晶片之可行性。

    For a Primary-Side Regulation (PSR) control flyback converter, output voltage can be estimated by an auxiliary winding without secondary-side feedback devices. Therefore, more compact size, lower cost, and higher efficiency can be achieved. The traditional control method mainly focuses on discontinuous conduction mode (DCM) application; nevertheless, when the system operating in high power condition, higher current ripple leads to higher losses. In contrast, when the system operating in continuous conduction mode (CCM), lower losses can be achieved because of lower current ripple. Most of current PSR control methods are implemented in either DCM or CCM. For DCM control method, the controller estimates output voltage by sensing auxiliary winding voltage at magnetizing inductor current zero points which cannot happen in CCM. Additionally, CCM control method cannot be applied to DCM, either. Because of the difficulty in sensing the output voltage, no algorithm is suitable for both DCM and CCM, and the power range of the system is limited. Finally, this controller is fabricated to achieve wide power range operation with “TSMC 0.25 μm CMOS high voltage mixed signal general purpose” process, and applied to an input voltage of 400 V, output voltage of 20 V, and output power of 150 W flyback converter to verify the feasibility of proposed control IC.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 3 Chapter 2 Fundamental Concepts of PSR Flyback Converter 4 2.1 Fundamental Concepts of PSR Flyback Converter 4 2.2 PSR Flyback Converter Control Method for DCM 8 2.3 PSR Flyback Converter Control Merhod for DCM/CCM 11 Chapter 3 Analysis and Design of the Proposed Controller 14 3.1 Theoretical Analysis of the Proposed Control 14 3.2 Overview of the Main Function Blocks 18 3.3 Introduction and Design of the Main Function Blocks 22 3.3.1 Diode Conduction Period Detector 22 3.3.2 Midpoint Trigger 24 3.3.3 Voltage Control Current Source (VCCS) 28 3.3.4 Auxiliary Circuits 30 3.4 CMOS Circuit Design 33 3.4.1 Two-Stage Op-Amp 33 3.4.2 Hysteresis Comparator 35 3.4.3 Edge Detector 39 3.4.4 Buffer 40 3.4.5 Bias Circuit 42 3.5 Chip Layout 45 Chapter 4 System Simulation and Experimental Results 46 4.1 System Simulation Results 46 4.1.1 Circuit Parameters Design 47 4.1.2 Simulation Waveforms of Main Function Blocks 47 4.2 System Simulation Performance 55 4.3 System Experimetal Results 57 Chapter 5 Conclusions and Future Works 64 5.1 Conclusions 64 5.2 Future Works 65 REFERENCES 66

    [1]H. F. Liu, and L. K. Chang, “Flexible and low cost design for a flyback AC/DC converter with harmonic current correction,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 17-24, Jan. 2005.
    [2]J. Park, Y. S. Roh, Y. J. Moon, and C. Yoo, “A CCM/DCM dual-mode synchronous rectification controller for a high-efficiency flyback converter,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 768-774, Feb. 2014.
    [3]M. T. Zhang, M. M. Jovanovi´c, and F. C. Y. Lee, “Design considerations and performance evaluations of synchronous rectification in flyback converters,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 538–546, May 1998.
    [4]B. Wang, X. Ruan, K. Yao, and M. Xu, “A method of reducing the peak to average ratio of LED current for electrolytic capacitor-less AC/DC drivers,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 592–601, Mar. 2010.
    [5]J. Zhang, X. huang, X. Wu, and Z. Qian, “A high-efficiency flyback converter with new active clamp technique,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 1775-1785, Jul. 2010.
    [6]K. H. Chen, T. J. Liang, B. K. Huang, “A new adaptive output voltage controller for fast battery charger,” IEEE APEC, pp. 3345-3351, May 2017.
    [7]J. Zhang, H. Zeng, and T. Jiang, “A primary-side control scheme for high power factor LED driver with TRIAC dimming capability,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4619–4629, Nov. 2012.
    [8]S. Du, F. Zhu, and P. Qian, “Primary side control circuit of a flyback converter for HBLED,” 2nd IEEE Int. Symp. Power Electron. Distrib. Generation Syst., pp. 339–342, Jun. 2010.
    [9]L. Xu, H. Zeng, J. Zhang, and Z. Qian, “A primary side controlled WLED driver compatible with TRIAC,” IEEE APEC, pp. 699–704, Mar. 2011.
    [10]S. Xu, S. Cheng, C. Wang, S. Lu, and W. Sun, “Digital regulation scheme for multimode primary controlled flyback converter,” IET Power Electron., vol. 9, no. 4, pp. 782-788, 2016.
    [11]L. Shi, Y. Chang, H. He, H. Nie, and Y. Zhao, “Design of rectifier diode temperature compensation circuit in a flyback converter,” IET Circuits Devices Syst., vol. 6, no. 4,pp. 246-251, Jul. 2012.
    [12]“FAN103, primary-side-regulation PWM controller,” Fairchild Semiconductor, Jan. 2014.
    [13]“FSEZ1317WA, primary-side regulation PWM with power mosfet integrated,” Fairchild Semiconductors, Nov. 2011.
    [14]“TEA1723FT, HV start-up flyback controller with integrated MOSFET for 11W applications, 1750 Hz burst frequency,” NXP Semiconductors, Jun. 2012.
    [15]C. W. Chang and Y. Y. Tzou, “Primary-side sensing error analysis for flyback converters,” IEEE Int. Power Electron. Motion Control Conf., pp. 524–528, May 2009.
    [16]Y. T. Lin, T. J. Liang, and K. H. Chen, “IC design of primary-side control for flyback converter,” IEEE Int. Future Energy Electron. Conf., pp. 449–453, Nov. 2013.
    [17]Y. Bai, W. Chen, X. Yang, X. Yang, and J. Sun, “A novel constant current and constant voltage adaptive blanking regulation scheme for primary-side controlled flyback converter,” IEEE Int. Power Electron. and Motor Control Conf. (IPEMC-ECCE Asia), May 2016.
    [18]S. H. Yang, T. H. Tsai, H. C. Chen, C. C. Chiu, K. H. Chen, Y. H. Lin, J. R. Lin, and T. Y. Tsai, “High accuracy knee voltage detection for primary-side control in flyback battery charger,” IEEE Trans. On Circuit and Systems, vol. 64, no. 4, Apr. 2017.
    [19]P. Hsieh, C. Chang, and C. Chen, “A primary-side control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching,” IEEE Energy Conversion Congress and Expo., pp. 3406-3412, Sep. 2013.
    [20]B. Keogh, B. Long, and J. Leisten, “Design improvements for primary-side regulated high-power flyback converters in continuous-conduction-mode,” IEEE APEC, pp. 492-497, Mar. 2015.
    [21]Y. Zhang, Marcel A. M. Hendrix, and Jorge L. Duarte, “CCM flyback converter using an observer-based digital controller,” IEEE Int. Conf. on Ind. Technol. (ICIT), pp. 2056-2061, Jun. 2015.
    [22]T. J. Liang and K. H. Chen, “Primary side control for flyback converter operating in DCM and CCM,” IEEE Trans. on Power Electron., vol. 33, No.4, Apr. 2018.
    [23]B. Keogh, B. Long, J. Leisten, “Design Improvements for primary-side-regulated high-power flyback converters in continuous-conduction-mode,” IEEE APEC, May 2015.
    [24]“UCC2863x, high-power flyback controller with primary-side regulation and peak-power mode,” Texas Instruments, Dec. 2017.
    [25]B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001.
    [26]T. C. Carusone, D. Johns, and K. Martin, “Analog Integrated Circuit Design,” John Wiley & Sons. Inc., 2013.

    下載圖示 校內:2023-08-27公開
    校外:2023-08-27公開
    QR CODE