簡易檢索 / 詳目顯示

研究生: 李宗穎
Li, Zong-Ying
論文名稱: 超低溫共燒陶瓷材料微波介電特性在天線基板應用之研究
A Study on the Microwave Dielectric Properties of Ultra–Low-Temperature Co-fired Ceramic Materials for Application in Antenna Substrates
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: 超低溫共燒陶瓷低損耗微波介電特性天線
外文關鍵詞: Microwave dielectric properties, ULTCC, Low-loss, Antenna
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將會分為二大部分作介紹,第一部分為新型超低溫共燒陶瓷材料之微波介電性能;第二部分則是使用 FR4、Al2O3及 K1.86Ag0.14Co2(MoO4)3三種不同基板製作貼片天線,並分析模擬與實作之結果。
    首先第一部分為K2Co2(MoO4)3陶瓷之微波介電特性,純相的K2Co2(MoO4)3在燒結溫度630oC下持溫4小時,可得最佳微波介電特性r ~ 7.31、Qf ~ 42,300 GHz、f ~ -81.3 ppm/oC;具有微量替代的K2Co1.9Zn0.1(MoO4)3樣品在630°C下實現了Q×f = 57,300 GHz,εr = 7.82和f = –69 ppm/°C,而K1.86Ag0.14Co2(MoO4)3樣品在540°C下表現出Q×f ~ 61,200 GHz,r ~ 8.73和f ~ –68 ppm/°C。研究還表明,該材料在共燒過程中與鋁電極具優異的化學相容性。基於這些結果,這些陶瓷材料在極低溫共燒陶瓷(ULTCC)應用中具有潛力,例如用於毫米波領域的天線及濾波器等。
    第二部分利用HFSS設計一款應用於毫米波段頻帶介於(26.5 ~ 28.5)GHz的基板型貼片天線,並將模擬電路實作於FR4、Al2O3及K1.86Ag0.14Co2(MoO4)3三種基板上,結果顯示具低介電損耗的陶瓷材料能提升天線之表現。

    Novel K2Co2(MoO4)3 microwave dielectric materials were prepared and investigated for the first time. The effects of substituting Ag+ for K+ and Zn2+ for Co2+ on the microwave dielectric properties, ceramic structure, sintering temperature, and surface microstructure were studied. The X-ray diffraction results showed that the samples had a monoclinic crystal structure and belonged to the P121/c1 (14) space group, with a single-phase composition of K2Co2(MoO4)3. The pure phase K2Co2(MoO4)3 ceramic achieved a Q×f = 42,300 GHz, an εr = 7.31, and a τf = –81.3 ppm/°C at a sintering temperature of 630°C. Partial substitution in the specimen can effectively enhance its densification and reduce the dielectric loss, primarily due to the reduction in cell volume of the ceramics. The K2Co1.9Zn0.1(MoO4)3 specimen with minute substitution achieved Q×f = 57,300 GHz, εr = 7.82 and τf = –69 ppm/°C at 630°C, while the K1.86Ag0.14Co2(MoO4)3 specimen showed Q×f = 61,200 GHz, εr = 8.73 and τf = –68 ppm/°C at 540°C. The research also exhibited that the material had outstanding chemical compatibility with aluminum electrodes during co-firing. Based on the results, these ceramics show potential as attractive candidates for ULTCC applications, such as a single antenna used in the millimeter-wave region, due to their low loss characteristics.

    摘要 i 致謝 viii 目錄 ix 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1-1前言 1 1-2研究目的 3 第二章 文獻回顧 5 2-1微波介電陶瓷之發展 5 2-2陶瓷材料的燒結 6 2-2-1燒結的種類 6 2-2-2材料燒結之過程 8 2-2-3材料燒結之擴散方式 10 2-3 介電共振器(DR) 10 2-3-1介電共振器原理 12 2-4微波介電材料之特性 15 2-4-1介電係數(Dielectric constant, r) 15 2-4-2品質因數(Quality factor, Q) 18 2-4-3共振頻率溫度飄移係數(f ) 21 2-5拉曼光譜與分子振動模態簡介 22 2-5-1拉曼光譜(Raman spectra) 22 2-5-2分子的振動模態(Vibrational modes) 22 2-6低溫共燒陶瓷(LTCC)技術簡介 24 2-7超低溫共燒陶瓷(ULTCC)技術簡介 26 第三章 微帶線及天線原理 27 3-1天線原理 27 3-1-1天線簡介 27 3-1-2天線之種類及其應用 28 3-2微帶線原理 30 3-2-1微帶傳輸線簡介 30 3-2-2微帶線的傳輸模態-準TEM波(quasi-TEM) 31 3-2-3微帶線各項參數公式計算 32 3-2-4微帶線的不連續效應 34 3-2-5微帶線的損耗 40 3-3 天線的饋電方式 41 3-4單極基板天線設計 42 第四章 實驗程序與量測儀器 45 4-1微波介電材料之製備 45 4-1-1粉末的製備與球磨 46 4-1-2粉末乾燥與煆燒 46 4-1-3加入黏著劑、過篩 46 4-1-4壓模成形、去黏著劑及燒結 47 4-2微波介電材料的量測與分析 47 4-2-1 X-ray分析 47 4-2-2 密度測量 48 4-2-3 SEM分析 48 4-2-4拉曼光譜儀分析 48 4-2-5微波介電特性量測方法 49 4-3單極天線的製作過程 52 第五章 實驗結果與討論 54 5-1 K2Co2 (MoO4)3之微波介電特性 56 5-2 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)之微波介電特性 56 5-2-1 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)之拉曼光譜分佈 56 5-2-2 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)之XRD組成分析 58 5-2-3 K2Co2-2xZn2x(MoO4)3 (x= 0.01–0.09)之晶格常數 62 5-2-4 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)SEM及粒徑分布 65 5-2-5 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)之相對密度分析 67 5-2-6 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)介電係數(r)分析 68 5-2-7 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)之品質因數與共振頻率乘積(Qf)分析 69 5-2-8 K2Co2-2xZn2x(MoO4)3 (x= 0–0.09)之共振頻率溫度飄移係數(f )分析 72 5-2-9 K2Co1.9Zn0.1(MoO4)3與Al共燒 76 5-3 K(2-2y)Ag2yCo2(MoO4)3(y= 0–0.09)之微波介電特性 78 5-3-1 K(2-2y)Ag2yCo2(MoO4)3 (y= 0.01–0.09)之拉曼光譜分佈 78 5-3-2 K(2-2y)Ag2yCo2(MoO4)3 (y= 0.01–0.09)之XRD相組成分析 80 5-3-3 K(2-2y)Ag2yCo2(MoO4)3 (y= 0.01–0.09)之晶格常數 82 5-3-4 K(2-2y)Ag2yCo2(MoO4)3 (y= 0–0.09)SEM分析 86 5-3-5 K(2-2y)Ag2yCo2(MoO4)3 (y= 0–0.09)之相對密度分析 88 5-3-6 K(2-2y)Ag2yCo2(MoO4)3 (y= 0–0.09)之介電係數(r)分析 89 5-3-7 K(2-2y)Ag2yCo2(MoO4)3 (y= 0–0.09)之品質因數與共振頻率乘積(Qf)分析 90 5-3-8 K(2-2y)Ag2yCo2(MoO4)3 (y= 0–0.09)之共振頻率溫度飄移係數(f )分析 93 5-3-9 K1.86Ag0.14Co2(MoO4)3與Al共燒 97 5-4單極天線的模擬實作 99 5-4-1玻璃纖維基板(FR4)之模擬與實作結果 100 5-4-2氧化鋁基板(Al2O3)之模擬與實作結果 103 5-4-3 K1.86Ag0.14Co2(MoO4)3自製基板之天線模擬與實作結果 106 第六章 結論 110 參考文獻 111

    [1] T.-H. Hsu and C.-L. Huang, "Low-loss microwave dielectric of novel Li1-2xMxVO3 (M= Mg, Zn)(x= 0–0.09) ceramics for ULTCC applications," Journal of the European Ceramic Society, vol. 41, no. 12, pp. 5918-5923, 2021.
    [2] C.-L. Huang, J.-L. Huang, and T.-H. Hsu, "Microwave dielectric properties of novel Na2Mg5-xZnx(MoO4)6(x= 0–0.09) ceramics for ULTCC applications," Materials Research Bulletin, vol. 141, p. 111355, 2021.
    [3] Y. Imanaka, Multilayered low temperature cofired ceramics (LTCC) technology. Springer Science & Business Media, 2005.
    [4] O. Dernovsek, M. Eberstein, W. Schiller, A. Naeini, G. Preu, and W. Wersing, "LTCC glass-ceramic composites for microwave application," Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1693-1697, 2001.
    [5] K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura, "Dielectric resonator materials and their applications for mobile communication systems," British ceramic. Transactions and journal, vol. 89, no. 2, pp. 39-43, 1990.
    [6] K. Wakino, "Recent development of dielectric resonator materials and filters in Japan," Ferroelectrics, vol. 91, no. 1, pp. 69-86, 1989.
    [7] J. K. Plourde and C.-L. Ren, "Application of dielectric resonators in microwave components," IEEE Transactions on Microwave Theory and Techniques, vol. 29, no. 8, pp. 754-770, 1981.
    [8] H. Jantunen, T. Kangasvieri, J. Vähäkangas, and S. Leppävuori, "Design aspects of microwave components with LTCC technique," Journal of the European Ceramic Society, vol. 23, no. 14, pp. 2541-2548, 2003.
    [9] L. K. Yeung and K.-L. Wu, "A compact second-order LTCC bandpass filter with two finite transmission zeros," IEEE transactions on microwave theory and techniques, vol. 51, no. 2, pp. 337-341, 2003.
    [10] A. Baker et al., "Integration concepts for the fabrication of LTCC structures," International Journal of Applied Ceramic Technology, vol. 2, no. 6, pp. 514-520, 2005.
    [11] R. Nelsen, ". Springer, New York," An Introduction to Copulas, 1999.
    [12] R. Raj, R. Tsai, J.-G. Wang, and C. Chyung, "Superplastic flow in ceramics enhanced by a liquid phase," in Deformation of Ceramic Materials II: Springer, 1984, pp. 353-378.
    [13] K. Hwang, R. German, and F. Lenel, "Capillary forces between spheres during agglomeration and liquid phase sintering," Metallurgical Transactions A, vol. 18, no. 1, pp. 11-17, 1987.
    [14] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, no. 1, pp. 1-39, 2009.
    [15] R. B. Heady and J. W. Cahn, "An analysis of the capillary forces in liquid-phase sintering of spherical particles," Metallurgical transactions, vol. 1, no. 1, pp. 185-189, 1970.
    [16] J. W. Cahn and R. Heady, "Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles," Journal of the American Ceramic Society, vol. 53, no. 7, pp. 406-409, 1970.
    [17] R. M. German, Sintering theory and practice. 1996.
    [18] D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
    [19] H. Arwin, M. Poksinski, and K. Johansen, "Total internal reflection ellipsometry: principles and applications," Applied optics, vol. 43, no. 15, pp. 3028-3036, 2004.
    [20] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE transactions on Microwave Theory and Techniques, vol. 32, no. 12, pp. 1609-1616, 1984.
    [21] 張盛富, 通信工程, 戴明鳳, and 物理學, 無線通信之射頻被動電路設計. 全華圖書, 2011.
    [22] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics. John wiley & sons, 1976.
    [23] A. J. Moulson and J. M. Herbert, Electroceramics: materials, properties, applications. John Wiley & Sons, 2003.
    [24] J. P. Schaffer, The science and design of engineering materials. Irwin Professional Publishing, 1999.
    [25] E. C. Liang, "An overview of high q te mode dielectric resonators and applications," Microwave journal, vol. 4, 2015.
    [26] H. Yu et al., "Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders," Polymers, vol. 11, no. 7, p. 1111, 2019.
    [27] 傅勝利,許志雄, "混成電路之基本技術理論與實務," 電子與材料雜誌, no. 第九期.
    [28] M. T. Sebastian and H. Jantunen, "Low loss dielectric materials for LTCC applications: a review," International Materials Reviews, vol. 53, no. 2, pp. 57-90, 2008.
    [29] G. Subodh and M. Sebastian, "Glass‐free Zn2Te3O8 microwave ceramic for LTCC applications," Journal of the American Ceramic Society, vol. 90, no. 7, pp. 2266-2268, 2007.
    [30] H. Hu et al., "BaMnV2O7: a novel microwave dielectric ceramic for LTCC applications," Ceramics International, vol. 47, no. 22, pp. 31506-31511, 2021.
    [31] Y.-L. Hsieh, T.-H. Hsu, and C.-L. Huang. "Microwave dielectric properties of MnTeMoO6 ceramic and lowering its dielectric loss by using Mg-substitution in the A-site." Journal of Alloys and Compounds, vol. 947
    [32] Yu, Mingyang, et al. "Microwave dielectric properties and chemical compatibility with alumina electrode of two novel ultra-low temperature firing ATeMoO6 (A= Mg, Zn) ceramics." Ceramics International, vol. 46, 2020, pp. 25619-25625.
    [33] X. Luo et al., "Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application," Ceramics International, vol. 43, no. 9, pp. 6791-6795, 2017.
    [34] M. Valant, G. S. Babu, M. Vrcon, T. Kolodiazhnyi, and A. K. Axelsson, "Pyrochlore range from Bi2O3–Fe2O3–TeO3 system for LTCC and photocatalysis and the crystal structure of new Bi3 (Fe0. 56Te0. 44) 3O11," Journal of the American Ceramic Society, vol. 95, no. 2, pp. 644-650, 2012.
    [35] GUO, Mei, et al. A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics."Journal of Materials Science: Materials in Electronics, vol. 25, pp 3712-3715, 2014.
    [36] SASIDHARANPILLAI, Arun, et al. Environmental friendly approach for the development of ultra-low-firing Li2WO4 ceramic tapes."ACS Sustainable Chemistry & Engineering, vol 6, pp. 6849-6855, 2018.
    [37] LI, Chunchun, et al. Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances."ACS Sustainable Chemistry & Engineering, vol. 9, pp 14461-14469, 2021.
    [38] Z. Di, P. Li-Xia, Q. Ze-Ming, J. Biao-Bing, and Y. Xi, "Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal," Scientific reports, vol. 4, no. 1, pp. 1-4, 2014.
    [39] X. Yuan, X. Xue, F. Jin, and H. Wang, "High-Q (Na1-xAgx)2WO4 (x= 0.1, 0.2) ceramics with ultra-low sintering temperature," Journal of the European Ceramic Society, vol. 39, no. 14, pp. 4156-4159, 2019.
    [40] U. A. Neelakantan, S. E. Kalathil, and R. Ratheesh, "Structure and microwave dielectric properties of ultralow‐temperature cofirable BaV2O6 ceramics," European Journal of Inorganic Chemistry, vol. 2015, no. 2, pp. 305-310, 2015.
    [41] "第二章天線基本理論," 2004,羅文信.
    [42] J. Jung, W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE microwave and wireless components letters, vol. 15, no. 10, pp. 703-705, 2005.
    [43] Y. Hwang, "Satellite antennas," in Proceedings of the IEEE, vol. 80, no. 1, pp. 183-193, Jan. 1992, doi: 10.1109/5.119577.
    [44] R. L. Haupt and Y. Rahmat-Samii, "Antenna Array Developments: A Perspective on the Past, Present and Future," in IEEE Antennas and Propagation Magazine, vol. 57, no. 1, pp. 86-96, Feb. 2015, doi: 10.1109/MAP.2015.2397154.
    [45] R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE transactions on microwave theory and techniques, vol. 16, no. 6, pp. 342-350, 1968.
    [46] "RF、數位/類比設計必知:傳輸線的種類," 2017.
    [47] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
    [48] 張育涵, "新型微小化 WiMAX (2~ 6GHz) 寬頻帶通濾波器之研製," 2009.
    [49] "<64-35.pdf>."
    [50] 趙工, "元器件高頻模型及微帶元件," July 9, 2021.
    [51] G. Kompa, Practical microstrip design and applications. Artech House London, England, 2005.
    [52] G. Matthaei, "Microwave filters, impedance-matching networks and coupling structures," Artech House Book, pp. 775-809, 1980.
    [53] E. J. Denlinger, "Losses of microstrip lines," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 6, pp. 513-522, 1980.
    [54] Microstrip or Patch Antenna, Antenna and Wave propogation / By Roshni Y / Leave a Comment
    [55] A. P. Reddy and P. Muthusamy, "Gain Enhancement of Dual Layer Truncated Corner Triangular Slot with DGS Patch Antenna for 5G/WLAN Applications," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, Rajasthan, India, India, 2021, pp. 240-243, doi: 10.1109/InCAP52216.2021.9726356.
    [56] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [57] E. Liang, H. Huo, J. Wang, and M. Chao, "Effect of water species on the phonon modes in orthorhombic Y2(MoO4)3 revealed by Raman spectroscopy," The journal of physical chemistry C, vol. 112, no. 16, pp. 6577-6581, 2008.
    [58] R. D. Shannon, "Dielectric polarizabilities of ions in oxides and fluorides," Journal of Applied physics, vol. 73, no. 1, pp. 348-366, 1993.
    [59] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, "Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+ O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics," Journal of the European Ceramic Society, vol. 30, no. 7, pp. 1731-1736, 2010.
    [60] E. S. Kim, C. J. Jeon, and P. G. Clem, "Effects of crystal structure on the microwave dielectric properties of ABO4 (A= Ni, Mg, Zn and B= Mo, W) ceramics," Journal of the American Ceramic Society, vol. 95, no. 9, pp. 2934-2938, 2012.
    [61] L. Glasser and H. D. B. Jenkins, "Lattice energies and unit cell volumes of complex ionic solids," Journal of the American Chemical Society, vol. 122, no. 4, pp. 632-638, 2000.
    [62] H. S. Park, K. H. Yoon, and E. S. Kim, "Effect of bond valence on microwave dielectric properties of complex perovskite ceramics," Materials chemistry and physics, vol. 79, no. 2-3, pp. 181-183, 2003.
    [63] N. Brese and M. O'keeffe, "Bond-valence parameters for solids," Acta Crystallographica Section B: Structural Science, vol. 47, no. 2, pp. 192-197, 1991.
    [64] T. Hanai, "Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions," Kolloid-Zeitschrift, vol. 171, no. 1, pp. 23-31, 1960.

    無法下載圖示 校內:2028-07-25公開
    校外:2028-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE