| 研究生: |
彭彥諮 Peng, Yen-Tzu |
|---|---|
| 論文名稱: |
製作介電陶瓷基板材料Mg_1.975Mn0.025SiO4與Mg(2-x)Co_xSiO_4之微波特性分析比較 Comparison of Microwave Characteristics of Dielectric Ceramic Materials Mg_1.975Mn0.025SiO_4 and Mg2-xCoSiO_4 |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 微波介電陶瓷材料 、基板濾波器 、Mg_1.975Mn_0.025SiO_4 、Mg_(2-x)Co_x SiO_4 |
| 外文關鍵詞: | dielectric ceramic material, filter, Mg_1.975Mn_0.025SiO_4, Mg_(2-x)Co_x SiO_4 |
| 相關次數: | 點閱:36 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微波介電陶瓷在現代通信中被用作諧振器、濾波器、介質天線、介質導波迴路等,對作爲通訊設備關鍵材料的介質陶瓷性能參數有更高的要求,即特低的介電損失(Q×f 值>100,000GHz)、低介電常數(5<〖 ε〗_r<15)及趨近於零的共振頻率溫度飄移係數(τ_f)。本研究選用Mg_2 SiO_4陶瓷介電陶瓷進行改良使其擁有更高的Q×f值,以得到更好的介電特性。實驗製作分別使用MnO、CoO做微量取代MgO來製作〖 Mg〗_1.975 Mn_0.025 SiO_(4 )和Mg_(2-x) Co_x SiO_4 (x=0.04-0.12),本研究論文中製作方式皆使用固相燒結法製作。經過實驗結果發現〖 Mg〗_1.975 Mn_0.025 SiO_(4 )(MMS) 在燒結溫度1250℃時擁有最佳的視密度與微波介電特性(ε_r≈6.7,Q×f≈1.6×10^5GHz, τ_f≈-75.6ppm/℃),與文獻中在氮氣環境下的製作比較後發現,Q×f值低了200,000 GHz,其於介電特性參數如相對介電常數和共振頻率溫度飄移係數與文獻中差異不大,造成Q×f值較低之可能原因為燒結方式、粉末原料、實驗環境不同所導致,但結果仍符合本研究目標Q×f 值>100,000GHz。在符合研究設定目標的前提之下,將MMS中的MnO置換成CoO,經過EDS量測後確認〖 Co〗^(2+)確實對Mg_2 SiO_4中的〖 Mg〗^(2+)有進行取代,其比例x=0.08燒結溫度為1250℃時,擁有最佳微波介電特性(Q×f~190,000 GHz、ε_r= 6.66〖、τ〗_f=-22 ppm/°C),並且與〖 Mg〗_1.975 Mn_0.025 SiO_(4 )相比是比較優異的製備高性能微波介電陶瓷材料。最後以〖 Mg〗_1.975 Mn_0.025 SiO_(4 )和Mg_(2-x) Co_x SiO_4 (x=0.08)製作陶瓷基板並設計中心頻率為3.5 GHz之帶通濾波器,用來驗證其在微波通訊領域之實用性,經過量測後發現,兩種基板的帶通濾波器具有以下特點:中心頻率(f_0 )在3.5 GHz、反射損耗(S_11)大於10dB、插入損耗(S_21)小於3dB、頻寬比大於3.5%。其中Mg_(2-x) Co_x SiO_4(=0.08)基板之濾波器比起〖 Mg〗_1.975 Mn_0.025 SiO_(4 )基板反射損耗較小約2.64dB、插入損耗較小0.2dB、頻寬也較高,故MCS(x=0.08)是比較好的微波介電陶瓷基板材料。
The objective of this study is to enhance the dielectric properties of Mg_2 SiO_4 ceramics by improving their Q×fvalues. Experimental samples were prepared by substituting MgO with trace amounts of MnO and CoO to form Mg_1.975 Mn_0.025 SiO_(4 )(MMS) and Mg_(2-x) Co_x SiO_4 SiO_4 (x=0.04-0.12) using the solid-state sintering in air method. The experimental results indicated that the MMS sintered at 1250°C exhibited the most optimal bulk density(3.12g/m3) and microwave dielectric properties ( ε_r≈6.7, Q×f≈1.6×10^5GHz, τ_f≈-75.6ppm/℃ ). Mg_(2-x) Co_x SiO_4 (x=0.08) sintered at 1250°C exhibited superior microwave dielectric properties (Q×f~190,000 GHz、ε_r= 6.66〖、τ〗_f=-22 ppm/°C ). The properties of MCS exhibited superior characteristics compared to those of MMS. Finally, the band-pass filters were fabricated on Mg_1.975 Mn_0.025 SiO_(4 )and on Mg_(2-x) Co_x SiO_4 (x=0.08) ceramic substrates ,respectively. Both filters had a center frequency (f_0) of 3.5 GHz, reflection loss (S_11) greater than 10 dB, insertion loss (S_21) less than 3 dB, and a bandwidth ratio greater than 3.5%. In comparison to the MMS filter, the Mg_(2-x) Co_x SiO_4 (x=0.08) filter exhibits a lower reflection loss by 2.64 dB, a lower insertion loss by 0.2 dB, and an enhanced bandwidth. Therefore, MCS (x=0.08) represents an excellent microwave dielectric ceramic substrate material in comparison to Mg_1.975 Mn_0.025 SiO_4(MMS).
[1] 微波射频网. "微波介质陶瓷的技术优势及应用前景." 微波射频网,. https://www.mwrf.net/tech/material/2012/8519.html (accessed 11/28, 2023).
[2] T. Sugiyama, T. Tsunooka, K.-i. Kakimoto, and H. Ohsato, "Microwave dielectric properties of forsterite-based solid solutions," Journal of the European Ceramic Society, vol. 26, no. 10-11, pp. 2097-2100, 2006.
[3] Y. Lai et al., "Phase composition, crystal structure and microwave dielectric properties of Mg2− xCuxSiO4 ceramics," Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1508-1516, 2018.
[4] W.-C. Tsai, K.-C. Chiu, Y.-X. Nian, and Y.-C. Liou, "Significant improvement of the microwave dielectric loss of Zn1.95M 0.05SiO4 ceramics (M= Zn, Mg, Ni, and Co) prepared by reaction-sintering process," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 14258-14263, 2017.
[5] P. Boch and J.-C. Ni, Ceramic materials: Processes, properties, and applications. John Wiley & Sons, 2010.
[6] "介電質 - 維基百科,自由的百科全書." https://zh.wikipedia.org/zh-tw/%E4%BB%8B%E9%9B%BB%E8%B3%AA (accessed June 14, 2023).
[7] 郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 國立成功大學, 2004.
[8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 曉園出版社, 1987.
[9] Fine Ceramics World. "Low Thermal Expansion." https://global.kyocera.com/fcworld/charact/heat/thermaexpan.html (accessed 2022).
[10] S. Zhang et al., "Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics," Journal of the American Ceramic Society, vol. 100, no. 4, pp. 1508-1516, 2017.
[11] J. Sheen, "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, vol. 20, no. 4, p. 042001, 2009.
[12] R. D. Basics. "Circular waveguide cavity resonator ||Resonant frequency and Quality factor derivation||." https://www.youtube.com/watch?v=2Gqhl6FL2Zs&ab_channel=RFDesignBasics (accessed 2022).
[13] R. Cava, "Dielectric materials for applications in microwave communicationsBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge, UK," Journal of Materials Chemistry, vol. 11, no. 1, pp. 54-62, 2001.
[14] Y.-C. Liou, S.-L. Yang, and S.-Y. Chu, "Effects of MgO and Mg(OH)2 on Phase Formation and Properties of MgTiO3 Microwave Dielectric Ceramics," Journal of Electronic Materials, vol. 44, no. 4, pp. 1062-1070, 2015.
[15] C.-L. Pan, C.-H. Shen, P.-C. Chen, and T.-C. Tan, "Characterization and dielectric behavior of a new dielectric ceramics MgTiO3–Ca0.8Sr0.2TiO3 at microwave frequencies," Journal of Alloys and Compounds, vol. 503, no. 2, pp. 365-369, 2010.
[16] R. M. German, Sintering Theory and Practice. Canada, 1996.
[17] Y. Lai et al., "Correlation between structure and microwave dielectric properties of low-temperature-fired Mg2SiO4 ceramics," Materials Research Bulletin, vol. 99, pp. 496-502, 2018.
[18] Y. Miyauchi, I. Kagomiya, Y. Shimizu, and H. Ohsato, "Microstructures and microwave dielectric properties on annealed Al2O3-TiO2 composite ceramics," Key Engineering Materials, vol. 388, pp. 251-254, 2009.
[19] !!! INVALID CITATION !!! .
[20] C. Zhang, R. Zuo, J. Zhang, and Y. Wang, "Structure‐Dependent Microwave Dielectric Properties and Middle‐Temperature Sintering of Forsterite (Mg1–xNix) 2SiO4 Ceramics," Journal of the American Ceramic Society, vol. 98, no. 3, pp. 702-710, 2015.
[21] K. Song, X. Chen, and C. Zheng, "Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system," Ceramics international, vol. 34, no. 4, pp. 917-920, 2008.
[22] H. Wang, H. Su, Y. Lai, H. Zhang, Y. Li, and X. Tang, "Microwave dielectric properties of temperature-stable (Mg 0.95 Co 0.05) 2TiO4–Li 2 TiO3 composite ceramics for LTCC applications," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 14190-14194, 2017.
[23] Z. Zhou et al., "Microwave dielectric properties of LBBS glass added (Zn0. 95Co0.05)2SiO4 for LTCC technology," Ceramics International, vol. 42, no. 9, pp. 11161-11164, 2016.
[24] S. B. Narang and S. Bahel, "Low loss dielectric ceramics for microwave applications: a review," J. Ceram. Process. Res, vol. 11, no. 3, pp. 316-321, 2010.
[25] 郭展綱, "燒結促進劑對 0.9 CaWO4-0.1 Mg2SiO4 介電陶瓷之影響與應用," 2004.
[26] P. A. J. "What are Radio Frequency Filters (RF Filters) and Why are They Important in the 5G World?" https://www.researchdive.com/blog/what-are-radio-frequency-filters-rf-filters-and-why-are-they-important-in-the-5g-world (accessed.
[27] Admin. "Importance Of Filters In Reducing Interference." https://txrx.com/importance-of-filters-in-reducing-interference-tx-rx/ (accessed.
[28] python. "巴特沃斯濾波器 python_巴特沃斯、切比雪夫、貝塞爾濾波器的區別." (accessed 2021).
[29] M. N. Sadiku, Elements of electromagnetics. 2015.
[30] M. N. O. Sadiku, Elements of Electromagnetics. 2001.
[31] "Microstrip Line." https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_I_(Ellingson)/03%3A_Transmission_Lines/3.11%3A_Microstrip_Line (accessed.
[32] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
[33] S. Ellingson, "Electromagnetics Volume 1 (beta)," ed: Virginia Tech Libraries, 2018.
[34] C. S. Analysis. "Quarter-Wave Impedance Transformer in Impedance Matching Applications." (accessed.
[35] 林威宇, "利用質量負載效應實現二階 FBAR 射頻濾波器之研究 Study on the Second Order RF Filters of FBARs Using Mass Loading Effect," 國立成功大學, 2022.
[36] 莊凱翔, "使用旋轉壓縮成形製作具有梯度微結構與硬度之鎂合金材料," 國立中山大學, 2016.
[37] 黃宏偉, "反應燒結法和機械化學合成奈米粉體在微波介電陶瓷(Zr0.8,Sn0.2)TiO4," 國立成功大學, 2010.
[38] "嘉富億科技股份有限公司-X射線螢光分析儀(XRF),膜厚儀,RoHS2.0." https://www.garefully.com.tw/tw/news/show.php?item=271 (accessed July 5, 2023).
[39] "電鏡能譜(EDS),作用真不簡單 - 每日頭條." https://kknews.cc/zh-tw/news/vln3b9a.html (accessed July 5, 2023).
[40] B. Hakki and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
[41] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
[42] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586-592, 1985.
[43] L. Li, J. Y. Zhu, and X. M. Chen, "Measurement Error of Temperature Coefficient of Resonant Frequency for Microwave Dielectric Materials by TE01δ-Mode Resonant Cavity Method," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3781-3786, 2016, doi: 10.1109/tmtt.2016.2601928.
[44] A. Belen and M. A. Belen, "Data‐driven modeling of band‐pass filter for sub‐5G applications," Microwave and Optical Technology Letters, vol. 65, no. 8, pp. 2210-2216, 2023.