簡易檢索 / 詳目顯示

研究生: 彭彥諮
Peng, Yen-Tzu
論文名稱: 製作介電陶瓷基板材料Mg_1.975Mn0.025SiO4與Mg(2-x)Co_xSiO_4之微波特性分析比較
Comparison of Microwave Characteristics of Dielectric Ceramic Materials Mg_1.975Mn0.025SiO_4 and Mg2-xCoSiO_4
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 122
中文關鍵詞: 微波介電陶瓷材料基板濾波器Mg_1.975Mn_0.025SiO_4Mg_(2-x)Co_x SiO_4
外文關鍵詞: dielectric ceramic material, filter, Mg_1.975Mn_0.025SiO_4, Mg_(2-x)Co_x SiO_4
相關次數: 點閱:36下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微波介電陶瓷在現代通信中被用作諧振器、濾波器、介質天線、介質導波迴路等,對作爲通訊設備關鍵材料的介質陶瓷性能參數有更高的要求,即特低的介電損失(Q×f 值>100,000GHz)、低介電常數(5<〖 ε〗_r<15)及趨近於零的共振頻率溫度飄移係數(τ_f)。本研究選用Mg_2 SiO_4陶瓷介電陶瓷進行改良使其擁有更高的Q×f值,以得到更好的介電特性。實驗製作分別使用MnO、CoO做微量取代MgO來製作〖 Mg〗_1.975 Mn_0.025 SiO_(4 )和Mg_(2-x) Co_x SiO_4 (x=0.04-0.12),本研究論文中製作方式皆使用固相燒結法製作。經過實驗結果發現〖 Mg〗_1.975 Mn_0.025 SiO_(4 )(MMS) 在燒結溫度1250℃時擁有最佳的視密度與微波介電特性(ε_r≈6.7,Q×f≈1.6×10^5GHz, τ_f≈-75.6ppm/℃),與文獻中在氮氣環境下的製作比較後發現,Q×f值低了200,000 GHz,其於介電特性參數如相對介電常數和共振頻率溫度飄移係數與文獻中差異不大,造成Q×f值較低之可能原因為燒結方式、粉末原料、實驗環境不同所導致,但結果仍符合本研究目標Q×f 值>100,000GHz。在符合研究設定目標的前提之下,將MMS中的MnO置換成CoO,經過EDS量測後確認〖 Co〗^(2+)確實對Mg_2 SiO_4中的〖 Mg〗^(2+)有進行取代,其比例x=0.08燒結溫度為1250℃時,擁有最佳微波介電特性(Q×f~190,000 GHz、ε_r= 6.66〖、τ〗_f=-22 ppm/°C),並且與〖 Mg〗_1.975 Mn_0.025 SiO_(4 )相比是比較優異的製備高性能微波介電陶瓷材料。最後以〖 Mg〗_1.975 Mn_0.025 SiO_(4 )和Mg_(2-x) Co_x SiO_4 (x=0.08)製作陶瓷基板並設計中心頻率為3.5 GHz之帶通濾波器,用來驗證其在微波通訊領域之實用性,經過量測後發現,兩種基板的帶通濾波器具有以下特點:中心頻率(f_0 )在3.5 GHz、反射損耗(S_11)大於10dB、插入損耗(S_21)小於3dB、頻寬比大於3.5%。其中Mg_(2-x) Co_x SiO_4(=0.08)基板之濾波器比起〖 Mg〗_1.975 Mn_0.025 SiO_(4 )基板反射損耗較小約2.64dB、插入損耗較小0.2dB、頻寬也較高,故MCS(x=0.08)是比較好的微波介電陶瓷基板材料。

    The objective of this study is to enhance the dielectric properties of Mg_2 SiO_4 ceramics by improving their Q×fvalues. Experimental samples were prepared by substituting MgO with trace amounts of MnO and CoO to form Mg_1.975 Mn_0.025 SiO_(4 )(MMS) and Mg_(2-x) Co_x SiO_4 SiO_4 (x=0.04-0.12) using the solid-state sintering in air method. The experimental results indicated that the MMS sintered at 1250°C exhibited the most optimal bulk density(3.12g/m3) and microwave dielectric properties ( ε_r≈6.7, Q×f≈1.6×10^5GHz, τ_f≈-75.6ppm/℃ ). Mg_(2-x) Co_x SiO_4 (x=0.08) sintered at 1250°C exhibited superior microwave dielectric properties (Q×f~190,000 GHz、ε_r= 6.66〖、τ〗_f=-22 ppm/°C ). The properties of MCS exhibited superior characteristics compared to those of MMS. Finally, the band-pass filters were fabricated on Mg_1.975 Mn_0.025 SiO_(4 )and on Mg_(2-x) Co_x SiO_4 (x=0.08) ceramic substrates ,respectively. Both filters had a center frequency (f_0) of 3.5 GHz, reflection loss (S_11) greater than 10 dB, insertion loss (S_21) less than 3 dB, and a bandwidth ratio greater than 3.5%. In comparison to the MMS filter, the Mg_(2-x) Co_x SiO_4 (x=0.08) filter exhibits a lower reflection loss by 2.64 dB, a lower insertion loss by 0.2 dB, and an enhanced bandwidth. Therefore, MCS (x=0.08) represents an excellent microwave dielectric ceramic substrate material in comparison to Mg_1.975 Mn_0.025 SiO_4(MMS).

    摘要 ii 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的與方法 3 第二章 介電陶瓷材料相關理論 5 2-1 介電陶瓷材料 5 2-2 介電原理 5 2-3 影響介電陶瓷材料特性之因素 8 2-3-1 品質因數(Q ) 9 2-3-2 相對介電常數(εr) 11 2-3-3 介電常數頻率溫度飄移係數(τε)與共振頻率溫度飄移係數(τf) 12 2-4 介電陶瓷材料製作 14 2-4-1 介電陶瓷材料燒結原理 14 2-4-2 介電材料燒結種類 17 2-4-3 固相反應法(Solid-state method) 18 2-5 介電陶瓷材料微波特性 19 2-5-1 常見介電陶瓷 19 2-5-2 Mg2SiO4 19 2-5-3 添加CoO之相關文獻 21 2-6 陶瓷基板與陶瓷介電共振器 24 第三章 濾波器與微帶線相關理論 26 3-1 濾波器原理 26 3-1-1 濾波器簡介 26 3-1-2 濾波器種類 26 3-1-3 濾波器頻率響應種類 28 3-1-4 濾波器微波特性參數 29 3-2 微帶線原理 30 3-2-1 微帶傳輸線簡介 30 3-2-2 微帶線之傳輸模態 31 3-2-3 微帶線之各項參數公式計算及考量 32 3-2-4 微帶線之不連續效應 34 3-3 微帶線共振器種類 36 3-3-1 λ/4 短路微帶線共振器 37 3-3-2 λ/2 開路微帶線共振器 37 3-4 共振器間的耦合形式 38 3-4-1 電場耦合 39 3-4-2 磁場耦合 40 3-4-3 混合耦合 42 3-5 λ /4 阻抗轉換器與開路殘斷 44 第四章 實驗方法與規劃 46 4-1 粉體原料 46 4-2 固態反應法與陶瓷體之製作 46 4-2-1 粉體製作 48 4-2-2 塊體製作 49 4-3 實驗量測 51 4-3-1 XRD量測 51 4-3-2 SEM量測 53 4-3-3 EDS量測 55 4-3-4 視密度量測 55 4-3-5 微波介電特性量測 57 4-3-6 共振頻率溫度飄移係數量測 61 4-4 濾波器設計、模擬、實作與量測 61 4-4-1 濾波器電路參數設計分析 61 4-4-2 濾波器之模擬分析設計 63 4-4-3 濾波器之實作 65 4-4-4 濾波器之量測與誤差 65 4-5 實驗規劃 65 4-5-1 固相燒結法Mg1.975Mn0.025SiO4 之微波介電特性 65 4-5-2 固相燒結法 Mg2-xCoxSiO4之微波介電特性 66 4-5-3 製作濾波器並量測不同材料下之特性變化 67 第五章 實驗結果與討論 68 5-1 Mg1.975Mn0.025SiO4 之特性探討 68 5-1-1 Mg1.975Mn0.025SiO4 之視密度分析 68 5-1-2 Mg1.975Mn0.025SiO4 之XRD分析 69 5-1-3 Mg1.975Mn0.025SiO4 之SEM分析 71 5-1-4 Mg1.975Mn0.025SiO4 之 Q×f 值分析 73 5-1-5 Mg1.975Mn0.025SiO4 之相對介電常數分析 74 5-1-6 Mg1.975Mn0.025SiO4 之共振頻率溫度飄移係數分析 75 5-1-7 總結 76 5-2 Mg2-xCoxSiO4之特性探討 77 5-2-1 Mg2-xCoxSiO4之視密度分析 77 5-2-2 Mg2-xCoxSiO4之XRD分析 79 5-2-3 Mg2-xCoxSiO4之SEM分析 80 5-2-4 Mg2-xCoxSiO4之EDS分析 82 5-2-5 Mg2-xCoxSiO4之 Q×f 值分析 84 5-2-6 Mg2-xCoxSiO4之相對介電常數分析 86 5-2-7 Mg2-xCoxSiO4之共振頻率溫度飄移係數分析 86 5-2-8 總結 87 5-3 濾波器模擬與實作之探討 88 5-3-1 Mg1.975Mn0.025SiO4 基板濾波器之模擬與實作量測分析 88 5-3-2 Mg2-xCoxSiO4(x=0.08)基板濾波器之模擬與實作量測分析 90 5-3-3 總結 93 第六章 結論與未來方向 94 6-1 結論 94 6-2 未來方向 95 參考文獻 96

    [1] 微波射频网. "微波介质陶瓷的技术优势及应用前景." 微波射频网,. https://www.mwrf.net/tech/material/2012/8519.html (accessed 11/28, 2023).
    [2] T. Sugiyama, T. Tsunooka, K.-i. Kakimoto, and H. Ohsato, "Microwave dielectric properties of forsterite-based solid solutions," Journal of the European Ceramic Society, vol. 26, no. 10-11, pp. 2097-2100, 2006.
    [3] Y. Lai et al., "Phase composition, crystal structure and microwave dielectric properties of Mg2− xCuxSiO4 ceramics," Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1508-1516, 2018.
    [4] W.-C. Tsai, K.-C. Chiu, Y.-X. Nian, and Y.-C. Liou, "Significant improvement of the microwave dielectric loss of Zn1.95M 0.05SiO4 ceramics (M= Zn, Mg, Ni, and Co) prepared by reaction-sintering process," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 14258-14263, 2017.
    [5] P. Boch and J.-C. Ni, Ceramic materials: Processes, properties, and applications. John Wiley & Sons, 2010.
    [6] "介電質 - 維基百科,自由的百科全書." https://zh.wikipedia.org/zh-tw/%E4%BB%8B%E9%9B%BB%E8%B3%AA (accessed June 14, 2023).
    [7] 郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 國立成功大學, 2004.
    [8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 曉園出版社, 1987.
    [9] Fine Ceramics World. "Low Thermal Expansion." https://global.kyocera.com/fcworld/charact/heat/thermaexpan.html (accessed 2022).
    [10] S. Zhang et al., "Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics," Journal of the American Ceramic Society, vol. 100, no. 4, pp. 1508-1516, 2017.
    [11] J. Sheen, "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, vol. 20, no. 4, p. 042001, 2009.
    [12] R. D. Basics. "Circular waveguide cavity resonator ||Resonant frequency and Quality factor derivation||." https://www.youtube.com/watch?v=2Gqhl6FL2Zs&ab_channel=RFDesignBasics (accessed 2022).
    [13] R. Cava, "Dielectric materials for applications in microwave communicationsBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge, UK," Journal of Materials Chemistry, vol. 11, no. 1, pp. 54-62, 2001.
    [14] Y.-C. Liou, S.-L. Yang, and S.-Y. Chu, "Effects of MgO and Mg(OH)2 on Phase Formation and Properties of MgTiO3 Microwave Dielectric Ceramics," Journal of Electronic Materials, vol. 44, no. 4, pp. 1062-1070, 2015.
    [15] C.-L. Pan, C.-H. Shen, P.-C. Chen, and T.-C. Tan, "Characterization and dielectric behavior of a new dielectric ceramics MgTiO3–Ca0.8Sr0.2TiO3 at microwave frequencies," Journal of Alloys and Compounds, vol. 503, no. 2, pp. 365-369, 2010.
    [16] R. M. German, Sintering Theory and Practice. Canada, 1996.
    [17] Y. Lai et al., "Correlation between structure and microwave dielectric properties of low-temperature-fired Mg2SiO4 ceramics," Materials Research Bulletin, vol. 99, pp. 496-502, 2018.
    [18] Y. Miyauchi, I. Kagomiya, Y. Shimizu, and H. Ohsato, "Microstructures and microwave dielectric properties on annealed Al2O3-TiO2 composite ceramics," Key Engineering Materials, vol. 388, pp. 251-254, 2009.
    [19] !!! INVALID CITATION !!! .
    [20] C. Zhang, R. Zuo, J. Zhang, and Y. Wang, "Structure‐Dependent Microwave Dielectric Properties and Middle‐Temperature Sintering of Forsterite (Mg1–xNix) 2SiO4 Ceramics," Journal of the American Ceramic Society, vol. 98, no. 3, pp. 702-710, 2015.
    [21] K. Song, X. Chen, and C. Zheng, "Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system," Ceramics international, vol. 34, no. 4, pp. 917-920, 2008.
    [22] H. Wang, H. Su, Y. Lai, H. Zhang, Y. Li, and X. Tang, "Microwave dielectric properties of temperature-stable (Mg 0.95 Co 0.05) 2TiO4–Li 2 TiO3 composite ceramics for LTCC applications," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 14190-14194, 2017.
    [23] Z. Zhou et al., "Microwave dielectric properties of LBBS glass added (Zn0. 95Co0.05)2SiO4 for LTCC technology," Ceramics International, vol. 42, no. 9, pp. 11161-11164, 2016.
    [24] S. B. Narang and S. Bahel, "Low loss dielectric ceramics for microwave applications: a review," J. Ceram. Process. Res, vol. 11, no. 3, pp. 316-321, 2010.
    [25] 郭展綱, "燒結促進劑對 0.9 CaWO4-0.1 Mg2SiO4 介電陶瓷之影響與應用," 2004.
    [26] P. A. J. "What are Radio Frequency Filters (RF Filters) and Why are They Important in the 5G World?" https://www.researchdive.com/blog/what-are-radio-frequency-filters-rf-filters-and-why-are-they-important-in-the-5g-world (accessed.
    [27] Admin. "Importance Of Filters In Reducing Interference." https://txrx.com/importance-of-filters-in-reducing-interference-tx-rx/ (accessed.
    [28] python. "巴特沃斯濾波器 python_巴特沃斯、切比雪夫、貝塞爾濾波器的區別." (accessed 2021).
    [29] M. N. Sadiku, Elements of electromagnetics. 2015.
    [30] M. N. O. Sadiku, Elements of Electromagnetics. 2001.
    [31] "Microstrip Line." https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-Optics/Book%3A_Electromagnetics_I_(Ellingson)/03%3A_Transmission_Lines/3.11%3A_Microstrip_Line (accessed.
    [32] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
    [33] S. Ellingson, "Electromagnetics Volume 1 (beta)," ed: Virginia Tech Libraries, 2018.
    [34] C. S. Analysis. "Quarter-Wave Impedance Transformer in Impedance Matching Applications." (accessed.
    [35] 林威宇, "利用質量負載效應實現二階 FBAR 射頻濾波器之研究 Study on the Second Order RF Filters of FBARs Using Mass Loading Effect," 國立成功大學, 2022.
    [36] 莊凱翔, "使用旋轉壓縮成形製作具有梯度微結構與硬度之鎂合金材料," 國立中山大學, 2016.
    [37] 黃宏偉, "反應燒結法和機械化學合成奈米粉體在微波介電陶瓷(Zr0.8,Sn0.2)TiO4," 國立成功大學, 2010.
    [38] "嘉富億科技股份有限公司-X射線螢光分析儀(XRF),膜厚儀,RoHS2.0." https://www.garefully.com.tw/tw/news/show.php?item=271 (accessed July 5, 2023).
    [39] "電鏡能譜(EDS),作用真不簡單 - 每日頭條." https://kknews.cc/zh-tw/news/vln3b9a.html (accessed July 5, 2023).
    [40] B. Hakki and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
    [41] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [42] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586-592, 1985.
    [43] L. Li, J. Y. Zhu, and X. M. Chen, "Measurement Error of Temperature Coefficient of Resonant Frequency for Microwave Dielectric Materials by TE01δ-Mode Resonant Cavity Method," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3781-3786, 2016, doi: 10.1109/tmtt.2016.2601928.
    [44] A. Belen and M. A. Belen, "Data‐driven modeling of band‐pass filter for sub‐5G applications," Microwave and Optical Technology Letters, vol. 65, no. 8, pp. 2210-2216, 2023.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE