研究生: |
李明鎮 Li, Ming-Jen |
---|---|
論文名稱: |
溶膠凝膠法製備 La2Ti2O7薄膜應用於電阻式記憶體之電阻轉換特性與機制研究 Resistive Switching Characteristics and Mechanisms of Sol-Gel Derived La2Ti2O7 Thin Films for RRAM |
指導教授: |
黃正亮
Huang, Cheng-Liang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 溶膠凝膠法 、La2Ti2O7薄膜 、電阻式記憶體 、金屬後退火 |
外文關鍵詞: | La2Ti2O7, Sol-gel, Amorphous, RRAM, Post metal annealing |
相關次數: | 點閱:48 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法搭配旋轉塗佈法製備非晶態La2Ti2O7(LTO)薄膜,並透過電子束蒸鍍法沉積Al與Ti上電極,探討金屬-絕緣體-金屬(MIM)結構之電阻式記憶體(RRAM)元件的雙極電阻轉換行為,並討論不同薄膜厚度、不同上電極、不同薄膜退火溫度以及金屬後退火製程對於電阻轉換(RS)特性之影響。厚度約35.7 nm之一層薄膜元件擁有最佳的RS特性表現,隨著厚度上升元件之操作電壓增加而操作次數減少。在Al上電極與Ti上電極的比較中,Al上電極元件展現出較低的操作電壓與較多之循環次數,推測是上下電極之間的功函數差導致。退火處理元件之元件耐久度皆明顯下滑,透過XPS分析得知為退火後之氧空缺含量大幅下降所導致,也因此瞭解到由氧空缺主導元件的RS特性。最後利用金屬後退火製程成功在上電極界面處形成約9.52 nm厚之氧化鋁層,並使得薄膜內部氧空缺含量提升,獲得3671次之循環次數,電阻比(Ron/Roff)約101能夠分辨高低阻態,由上電極擴散至薄膜內的Al離子則幫助元件維持2.02 V/-1.30 V之低工作電壓,且於常溫及85℃下之記憶保留時間(Retention time)皆能夠達到一萬秒。本研究中所有以Al作為上電極之元件皆由相同之傳導機制主導,於Set過程之高阻態(HRS)為trap-controlled SCLC傳導機制,低阻態(LRS)為歐姆導通機制,Reset過程中之HRS與LRS則皆由歐姆導通機制主導。
Amorphous La2Ti2O7 (LTO) thin films were prepared by sol-gel method and the bipolar resistive switching (BRS) properties in metal (Al or Ti) /LTO/ITO devices were investigated. The influences of film thickness, top electrode, annealing temperature and post metal annealing (PMA) treatment on the resistive switching (RS) characteristics were also discussed. The single layer LTO thin film exhibits a better combination of RS performance because it is easy to form conductive filaments. Moreover, the work function difference between the top and the bottom electrode affects the RS performance of the devices. The RS characteristics of the devices are dominated by oxygen vacancies and the content of oxygen vacancies was seriously reduced after annealing, which led to a significant decrease of the endurance. In addition, PMA treatment increased the content of oxygen vacancies because of the formation of AlOx interface layer and made Al ions diffuse into the films, which improved the RS performance. The optimized RS characteristics of PMA 300℃ device shows 3671 switching cycles with a Ron/Roff ratio of 101, low operating voltage (VSet/VReset=2.02 V/−1.30 V) and over 104 seconds of retention time at room temperature and 85ºC, indicating the potential for practical RRAM applications. Conduction mechanism of all devices with Al top electrode were described by trap-controlled space-charge limited current (SCLC) and ohmic conduction.
[1] M. Lanza, "A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope," Materials, vol. 7, no. 3, pp. 2155-2182, 2014.
[2] H. Akinaga and H. Shima, "Resistive random access memory (ReRAM) based on metal oxides," Proceedings of the IEEE, vol. 98, no. 12, pp. 2237-2251, 2010.
[3] Q. Liu et al., "Real‐time observation on dynamic growth/dissolution of conductive filaments in oxide‐electrolyte‐based ReRAM," Advanced Materials, vol. 24, no. 14, pp. 1844-1849, 2012.
[4] C. Lee, I. Kim, W. Choi, H. Shin, and J. Cho, "Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry," Langmuir, vol. 25, no. 8, pp. 4274-8, Apr 21 2009, doi: 10.1021/la804267n.
[5] Y. Chen et al., "Resistive Switching Characteristics of Flexible TiO2 Thin Film Fabricated by Deep Ultraviolet Photochemical Solution Method," IEEE Electron Device Lett., vol. 38, no. 11, pp. 1528-1531, 2017, doi: 10.1109/led.2017.2756444.
[6] S. Ha et al., "Effect of Annealing Environment on the Performance of Sol–Gel-Processed ZrO2 RRAM," Electronics, vol. 8, no. 9, 2019, doi: 10.3390/electronics8090947.
[7] H. Xie et al., "Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device," Semicond. Sci. Technol., vol. 27, no. 12, 2012, doi: 10.1088/0268-1242/27/12/125008.
[8] H. Li, B. Niu, Q. Mao, J. Xi, W. Ke, and Z. Ji, "Resistive switching characteristics of ZnO based ReRAMs with different annealing temperatures," Solid-State Electron., vol. 75, pp. 28-32, 2012, doi: 10.1016/j.sse.2012.04.032.
[9] P. K. Sarkar, M. Prajapat, A. Barman, S. Bhattacharjee, and A. Roy, "Multilevel resistance state of Cu/La2O3/Pt forming-free switching devices," Journal of Materials Science, vol. 51, no. 9, pp. 4411-4418, 2016, doi: 10.1007/s10853-016-9753-6.
[10] T. Zhang, X. Ou, W. Zhang, J. Yin, Y. Xia, and Z. Liu, "High-k-rare-earth-oxide Eu2O3 films for transparent resistive random access memory (RRAM) devices," Journal of Physics D: Applied Physics, vol. 47, no. 6, 2014, doi: 10.1088/0022-3727/47/6/065302.
[11] X. Cao et al., "Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications," Journal of Applied Physics, vol. 106, no. 7, 2009, doi: 10.1063/1.3236573.
[12] K. H. Chen, M. C. Kao, S. J. Huang, and J. Z. Li, "Bipolar Switching Properties of Neodymium Oxide RRAM Devices Using by a Low Temperature Improvement Method," Materials (Basel), vol. 10, no. 12, Dec 12 2017, doi: 10.3390/ma10121415.
[13] J. Huang and D. Ma, "Electrical switching and memory behaviors in organic diodes based on polymer blend films treated by ultraviolet ozone," Applied Physics Letters, vol. 105, no. 9, 2014, doi: 10.1063/1.4895122.
[14] Z. H. Tang et al., "Resistive Switching Properties of Sol–Gel-Derived V-Doped SrTiO3 Thin Films," J. Electron. Mater., vol. 42, no. 8, pp. 2510-2515, 2013, doi: 10.1007/s11664-013-2600-5.
[15] L. Chen et al., "Resistive switching properties of plasma enhanced-ALD La2O3 for novel nonvolatile memory application," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, no. 1, 2012, doi: 10.1116/1.3669516.
[16] V. Prusakova et al., "The development of sol–gel derived TiO2 thin films and corresponding memristor architectures," RSC Advances, vol. 7, no. 3, pp. 1654-1663, 2017, doi: 10.1039/c6ra25618j.
[17] Y. Deng et al., "Self-rectifying and forming-free resistive switching behaviors in Pt/La2Ti2O7/Pt structure," Ceram. Int., vol. 48, no. 4, pp. 4693-4698, 2022, doi: 10.1016/j.ceramint.2021.11.005.
[18] Y. Wang et al., "Electric field induced Mott transition and bipolar resistive switching in La2Ti2O7-x thin film," Appl. Mater. Today, vol. 26, 2022, doi: 10.1016/j.apmt.2022.101395.
[19] W.-G. Kim and S.-W. Rhee, "Effect of the top electrode material on the resistive switching of TiO2 thin film," Microelectron. Eng., vol. 87, no. 2, pp. 98-103, 2010, doi: 10.1016/j.mee.2009.05.023.
[20] H. Young Jeong, S. Kyu Kim, J. Yong Lee, and S.-Y. Choi, "Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices," Journal of The Electrochemical Society, vol. 158, no. 10, 2011, doi: 10.1149/1.3622295.
[21] H. S. P. Wong et al., "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012, doi: 10.1109/jproc.2012.2190369.
[22] T. M. Pan, C. H. Lu, S. Mondal, and F. H. Ko, "Resistive Switching Characteristics of Tm2O3, Yb2O3, and Lu2O3-Based Metal-Insulator-Metal Memory Devices," Ieee Transactions on Nanotechnology, vol. 11, no. 5, pp. 1040-1046, Sep 2012, doi: 10.1109/tnano.2012.2211893.
[23] N. Zhang et al., "Dielectric relaxations in multiferroic La2Ti2O7 ceramics," J. Alloy. Compd., vol. 652, pp. 1-8, 2015, doi: 10.1016/j.jallcom.2015.08.169.
[24] Y. Li, L. Jiang, Q. Chen, and J. Zhu, "Regulate the microstructure and band gap of La2Ti2O7," Journal of Materials Science: Materials in Electronics, vol. 31, no. 1, pp. 52-59, 2019, doi: 10.1007/s10854-019-00877-1.
[25] G. Herrera, J. Jiménez-Mier, and E. Chavira, "Layered-structural monoclinic–orthorhombic perovskite La2Ti2O7 to orthorhombic LaTiO3 phase transition and their microstructure characterization," Materials Characterization, vol. 89, pp. 13-22, 2014, doi: 10.1016/j.matchar.2013.12.013.
[26] X. Lin, A. Younis, X. Xiong, K. Dong, D. Chu, and S. Li, "Bipolar resistive switching characteristics in LaTiO3 nanosheets," RSC Advances, vol. 4, no. 35, 2014, doi: 10.1039/c4ra01626b.
[27] Z. Gao et al., "The anisotropic conductivity of ferroelectric La2Ti2O7 ceramics," J. Eur. Ceram. Soc., vol. 37, no. 1, pp. 137-143, 2017, doi: 10.1016/j.jeurceramsoc.2016.08.020.
[28] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale Res. Lett., vol. 9, no. 1, pp. 1-33, 2014.
[29] W. Liu, Z. Zhang, M. Li, and Z. Liu, "A trustworthy key generation prototype based on DDR3 PUF for wireless sensor networks," Sensors (Basel), vol. 14, no. 7, pp. 11542-56, Jun 30 2014, doi: 10.3390/s140711542.
[30] N. K. Shukla, S. Birla, R. K. Singh, and M. Pattanaik, "Speed and Leakage Power Trade-off in Various SRAM Circuits," International Journal of Computer and Electrical Engineering, pp. 244-249, 2011, doi: 10.7763/ijcee.2011.V3.321.
[31] R. Micheloni, G. Campardo, and P. Olivo, Memories in wireless systems. Springer Science & Business Media, 2008.
[32] M. Sanvido, F. R. Chu, A. Kulkarni, and R. Selinger, "nand Flash Memory and Its Role in Storage Architectures," Proceedings of the IEEE, vol. 96, no. 11, pp. 1864-1874, 2008, doi: 10.1109/jproc.2008.2004319.
[33] Y. U. N. Ling et al., "THE PERFORMANCE OF Ge2Sb2Te5 MATERIAL FOR PCRAM DEVICE," Integrated Ferroelectrics, vol. 78, no. 1, pp. 261-270, 2011, doi: 10.1080/10584580600663375.
[34] A. Gyanathan and Y.-C. Yeo, "Two-bit multi-level phase change random access memory with a triple phase change material stack structure," Journal of Applied Physics, vol. 112, no. 10, 2012, doi: 10.1063/1.4765742.
[35] H. S. P. Wong et al., "Phase Change Memory," Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010, doi: 10.1109/jproc.2010.2070050.
[36] R. C. Sousa and I. L. Prejbeanu, "Non-volatile magnetic random access memories (MRAM)," Comptes Rendus Physique, vol. 6, no. 9, pp. 1013-1021, 2005, doi: 10.1016/j.crhy.2005.10.007.
[37] T. Eshita, T. Tamura, and Y. Arimoto, "Ferroelectric random access memory (FRAM) devices," in Advances in Non-volatile Memory and Storage Technology, 2014, pp. 434-454.
[38] P. Girard, Y. Cheng, A. Virazel, W. Zhao, R. Bishnoi, and M. B. Tahoori, "A Survey of Test and Reliability Solutions for Magnetic Random Access Memories," Proceedings of the IEEE, vol. 109, no. 2, pp. 149-169, 2021, doi: 10.1109/jproc.2020.3029600.
[39] D. S. Jeong et al., "Emerging memories: resistive switching mechanisms and current status," Rep Prog Phys, vol. 75, no. 7, p. 076502, Jul 2012, doi: 10.1088/0034-4885/75/7/076502.
[40] Z. Song et al., "From octahedral structure motif to sub-nanosecond phase transitions in phase change materials for data storage," Science China Information Sciences, vol. 61, no. 8, 2018, doi: 10.1007/s11432-018-9404-2.
[41] T. Endoh, H. Koike, S. Ikeda, T. Hanyu, and H. Ohno, "An Overview of Nonvolatile Emerging Memories— Spintronics for Working Memories," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 2, pp. 109-119, 2016, doi: 10.1109/jetcas.2016.2547704.
[42] M. Akbari, M.-K. Kim, D. Kim, and J.-S. Lee, "Reproducible and reliable resistive switching behaviors of AlOX/HfOX bilayer structures with Al electrode by atomic layer deposition," RSC Advances, vol. 7, no. 27, pp. 16704-16708, 2017, doi: 10.1039/c6ra26872b.
[43] C. F. Liu et al., "Resistive Switching Characteristics of HfO2 Thin Films on Mica Substrates Prepared by Sol-Gel Process," Nanomaterials (Basel), vol. 9, no. 8, Aug 4 2019, doi: 10.3390/nano9081124.
[44] S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, "Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices," The Journal of Physical Chemistry C, vol. 116, no. 33, pp. 17955-17959, 2012, doi: 10.1021/jp305482c.
[45] Y. Wu, S. Yu, B. Lee, and P. Wong, "Low-power TiN/Al2O3/Pt resistive switching device with sub-20 μA switching current and gradual resistance modulation," Journal of Applied Physics, vol. 110, no. 9, 2011, doi: 10.1063/1.3657938.
[46] C. Mahata et al., "Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems," J. Alloy. Compd., vol. 826, 2020, doi: 10.1016/j.jallcom.2020.154434.
[47] G. Landi et al., "Evidence of Bipolar Resistive Switching Memory in Perovskite Solar Cell," IEEE Journal of the Electron Devices Society, vol. 6, pp. 454-463, 2018, doi: 10.1109/jeds.2018.2820319.
[48] P. Sun et al., "Thermal crosstalk in 3-dimensional RRAM crossbar array," Sci Rep, vol. 5, p. 13504, Aug 27 2015, doi: 10.1038/srep13504.
[49] R. Liu, D. Mahalanabis, H. J. Barnaby, and S. Yu, "Investigation of Single-Bit and Multiple-Bit Upsets in Oxide RRAM-Based 1T1R and Crossbar Memory Arrays," IEEE Transactions on Nuclear Science, vol. 62, no. 5, pp. 2294-2301, 2015, doi: 10.1109/tns.2015.2465164.
[50] J. Molina-Reyes and L. Hernandez-Martinez, "Understanding the Resistive Switching Phenomena of Stacked Al/Al2O3/Al Thin Films from the Dynamics of Conductive Filaments," Complexity, vol. 2017, pp. 1-10, 2017, doi: 10.1155/2017/8263904.
[51] T. Guo, T. Tan, and Z. Liu, "Enhanced resistive switching behaviors of HfO2:Cu film with annealing process," Vacuum, vol. 114, pp. 78-81, 2015, doi: 10.1016/j.vacuum.2015.01.006.
[52] J. H. Shim et al., "Resistive switching characteristics of TiO2 thin films with different electrodes," J. Korean Phys. Soc., vol. 67, no. 5, pp. 936-940, 2015, doi: 10.3938/jkps.67.936.
[53] Lin, Wu, and Chen, "Effects of Sm2O3 and V2O5 Film Stacking on Switching Behaviors of Resistive Random Access Memories," Crystals, vol. 9, no. 6, 2019, doi: 10.3390/cryst9060318.
[54] H. Zheng et al., "Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window," Semicond. Sci. Technol., vol. 32, no. 5, May 2017, Art no. 055006, doi: 10.1088/1361-6641/aa6379.
[55] X. Q. Pan et al., "Resistive switching behavior in single crystal SrTiO3 annealed by laser," Appl. Surf. Sci., vol. 389, pp. 1104-1107, Dec 2016, doi: 10.1016/j.apsusc.2016.08.013.
[56] A. Thakre, J. Kaswan, A. K. Shukla, and A. Kumar, "Unipolar resistive switching behavior in sol–gel synthesized FeSrTiO3 thin films," RSC Advances, vol. 7, no. 85, pp. 54111-54116, 2017, doi: 10.1039/c7ra09836g.
[57] T. Zhang, Y. Bai, C.-H. Jia, and W.-F. Zhang, "Interface-related switching behaviors of amorphous Pr0.67Sr0.33MnO3-based memory cells," Chin. Phys. B, vol. 21, no. 10, 2012, doi: 10.1088/1674-1056/21/10/107304.
[58] W. Liu et al., "Twin domains in organometallic halide perovskite thin-films," Crystals, vol. 8, no. 5, p. 216, 2018.
[59] K. W. Lin, T. Y. Wang, and Y. C. Chang, "Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films," Polymers (Basel), vol. 13, no. 5, Feb 26 2021, doi: 10.3390/polym13050710.
[60] B. Cho et al., "Rewritable switching of one diode-one resistor nonvolatile organic memory devices," Adv Mater, vol. 22, no. 11, pp. 1228-32, Mar 19 2010, doi: 10.1002/adma.200903203.
[61] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications," Nanoscale Res Lett, vol. 15, no. 1, p. 90, Apr 22 2020, doi: 10.1186/s11671-020-03299-9.
[62] M. H. Tang et al., "Bipolar and unipolar resistive switching behaviors of sol–gel-derived SrTiO3 thin films with different compliance currents," Semicond. Sci. Technol., vol. 26, no. 7, 2011, doi: 10.1088/0268-1242/26/7/075019.
[63] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, no. 6, pp. 28-36, 2008, doi: 10.1016/s1369-7021(08)70119-6.
[64] X. Zhang et al., "Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation," Nanoscale Res Lett, vol. 15, no. 1, p. 11, Jan 15 2020, doi: 10.1186/s11671-019-3229-y.
[65] G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film," Applied Physics Letters, vol. 91, no. 22, 2007, doi: 10.1063/1.2813617.
[66] Y. Huang et al., "Amorphous ZnO based resistive random access memory," RSC Advances, vol. 6, no. 22, pp. 17867-17872, 2016, doi: 10.1039/c5ra22728c.
[67] L. Hu, W. Han, and H. Wang, "Resistive switching and synaptic learning performance of a TiO2 thin film based device prepared by sol-gel and spin coating techniques," Nanotechnology, vol. 31, no. 15, p. 155202, Apr 10 2020, doi: 10.1088/1361-6528/ab6472.
[68] D.-W. Tao, J.-B. Chen, Z.-j. Jiang, B.-J. Qi, K. Zhang, and C.-W. Wang, "Making reversible transformation from electronic to ionic resistive switching possible by applied electric field in an asymmetrical Al/TiO2/FTO nanostructure," Appl. Surf. Sci., vol. 502, 2020, doi: 10.1016/j.apsusc.2019.144124.
[69] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014, doi: 10.1155/2014/578168.
[70] S. Yu, X. Guan, and H. S. P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model," Applied Physics Letters, vol. 99, no. 6, 2011, doi: 10.1063/1.3624472.
[71] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015, doi: 10.3390/electronics4030586.
[72] Y. Lee-Eun, K. Sungho, R. Min-Ki, C. Sung-Yool, and C. Yang-Kyu, "Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications," IEEE Electron Device Lett., vol. 29, no. 4, pp. 331-333, 2008, doi: 10.1109/led.2008.918253.
[73] K. Nagashima, T. Yanagida, K. Oka, and T. Kawai, "Unipolar resistive switching characteristics of room temperature grown SnO2 thin films," Applied Physics Letters, vol. 94, no. 24, 2009, doi: 10.1063/1.3156863.
[74] E. I. Morosanova, "Silica and silica-titania sol-gel materials: synthesis and analytical application," Talanta, vol. 102, pp. 114-22, Dec 15 2012, doi: 10.1016/j.talanta.2012.07.043.
[75] H. Wu, M. Xue, J. Ou, F. Wang, and W. Li, "Effect of annealing temperature on surface morphology and work function of ZnO nanorod arrays," J. Alloy. Compd., vol. 565, pp. 85-89, 2013.
[76] C.-H. Hsu and S.-Y. Lin, "Characterization of ZrTiO4 thin films prepared by sol–gel method," Materials Science in Semiconductor Processing, vol. 16, no. 5, pp. 1262-1266, 2013, doi: 10.1016/j.mssp.2013.01.015.
[77] M. Zhu, X. Cai, M. Fujitsuka, J. Zhang, and T. Majima, "Au/La2Ti2O7 Nanostructures Sensitized with Black Phosphorus for Plasmon-Enhanced Photocatalytic Hydrogen Production in Visible and Near-Infrared Light," Angew Chem Int Ed Engl, vol. 56, no. 8, https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fanie.201612315&file=anie201612315-sup-0001-misc_information.pdf, pp. 2064-2068, Feb 13 2017, doi: 10.1002/anie.201612315.
[78] J. Chastain and R. C. King Jr, "Handbook of X-ray photoelectron spectroscopy," Perkin-Elmer Corporation, vol. 40, p. 221, 1992.
[79] F. Gul, "Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor," Ceram. Int., vol. 44, no. 10, pp. 11417-11423, 2018, doi: 10.1016/j.ceramint.2018.03.198.
[80] H.-T. Tseng, T.-H. Hsu, M.-H. Tsai, C.-Y. Huang, and C.-L. Huang, "Resistive switching characteristics of sol-gel derived La2Zr2O7 thin film for RRAM applications," J. Alloy. Compd., vol. 899, 2022, doi: 10.1016/j.jallcom.2021.163294.
[81] C. Chen et al., "Room-temperature electrically pumped near-infrared random lasing from high-quality m-plane ZnO-based metal-insulator-semiconductor devices," Nanoscale Res. Lett., vol. 10, no. 1, pp. 1-6, 2015.
[82] T. Guo, T. Tan, and Z. Liu, "Stable resistive switching characteristics of Ce:HfOx film induced by annealing process," Materials Science in Semiconductor Processing, vol. 54, pp. 65-69, 2016, doi: 10.1016/j.mssp.2016.07.002.
[83] D.-W. Tao, Z.-J. Jiang, J.-B. Chen, X.-G. Wang, Y. Li, and C.-W. Wang, "The evolution of resistive switching behaviors dependent on interface transition layers in Cu/Al/FTO nanostructure," J. Alloy. Compd., vol. 827, 2020, doi: 10.1016/j.jallcom.2020.154270.
[84] S. Yan, H. Wang, J. Xu, and L. Yang, "Resistance Switching Behaviour and Properties of Ag/La0.5Mg0.5MnO3/p+-Si with Different Thicknesses of Resistance Films Fabricated through Sol—Gel Method," Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 34, no. 3, pp. 568-571, 2019, doi: 10.1007/s11595-019-2089-8.
[85] S.-Y. Huang et al., "Resistive switching characteristics of Sm2O3 thin films for nonvolatile memory applications," Solid-State Electron., vol. 63, no. 1, pp. 189-191, 2011, doi: 10.1016/j.sse.2011.04.012.
[86] K. J. Lee, L. W. Wang, T. K. Chiang, and Y. H. Wang, "Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory," Materials (Basel), vol. 8, no. 10, pp. 7191-7198, Oct 26 2015, doi: 10.3390/ma8105374.
[87] Z. Yong et al., "Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering," Appl. Surf. Sci., vol. 551, p. 149386, 2021.
[88] J.-C. Wang, D.-Y. Jian, Y.-R. Ye, L.-C. Chang, and C.-S. Lai, "Characteristics of gadolinium oxide resistive switching memory with Pt–Al alloy top electrode and post-metallization annealing," Journal of Physics D: Applied Physics, vol. 46, no. 27, 2013, doi: 10.1088/0022-3727/46/27/275103.
[89] H. Y. Lee et al., "Impact of self-complementary resistance switch induced by over-reset energy on the memory reliability of hafnium oxide based resistive random access memory," Jpn. J. Appl. Phys., vol. 53, no. 8S1, 2014, doi: 10.7567/jjap.53.08le01.
[90] Y. T. Chu, M. H. Tsai, and C. L. Huang, "Resistive switching properties and conduction mechanisms of LaSmOx thin film by RF sputtering for RRAM applications," (in English), Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., Article vol. 271, p. 8, Sep 2021, Art no. 115313, doi: 10.1016/j.mseb.2021.115313.
[91] C.-C. Hsu, H. Chuang, and W.-C. Jhang, "Annealing effect on forming-free bipolar resistive switching characteristics of sol-gel WOx resistive memories with Al conductive bridges," J. Alloy. Compd., vol. 882, 2021, doi: 10.1016/j.jallcom.2021.160758.
[92] S. Mondal, J. L. Her, F. H. Ko, and T. M. Pan, "The Effect of Al and Ni Top Electrodes in Resistive Switching Behaviors of Yb2O3-Based Memory Cells," ECS Solid State Letters, vol. 1, no. 2, pp. P22-P25, 2012, doi: 10.1149/2.005202ssl.
[93] C.-Y. Liu, Y.-R. Shih, and S.-J. Huang, "Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature," Solid State Commun., vol. 159, pp. 13-17, 2013, doi: 10.1016/j.ssc.2013.01.008.