簡易檢索 / 詳目顯示

研究生: 官秉霖
Kuan, Bing-Lin
論文名稱: 採用串聯向量補償器於抑制混合式離岸風場之次同步共振
Using SVeC to Suppress Subsynchronous Resonance in a Hybrid Offshore Wind Farm
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 148
中文關鍵詞: 風場串聯向量補償器次同步共振
外文關鍵詞: wind farm, series vectorial compensator, subsynchronous resonance.
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係研究採用串聯向量補償器於抑制含有蒸汽渦輪機以及風場系統之次同步共振。文中第一個研究系統係以雙饋式感應發電機與動態滑差式感應發電機風場取代美國電機電子工程師學會次同步共振之第一標準模型的傳統同步發電機;文中第二個研究系統係為整合動態滑差式感應發電機之陸域風場與雙饋式感應發電機之離岸風場經串聯補償電容器連接至台電簡化系統。文中於三相平衡系統下利用交直軸等效電路模型,分別建立同步發電機、雙饋式感應發電機為主與動態滑差式感應發電機為主之風場以及串聯向量補償器等模型,並利用極點安置法設計串聯向量補償器之比例-積分-微分阻尼控制器。在穩態特性方面,針對不同的線路串聯補償比及風場在不同平均風速下進行特徵值分析;在動態模擬方面,完成風場在風速變動以及線路補償比變動等時域模擬。由穩態及動態等模擬結果得知,當系統加入串聯向量補償器結合比例-積分-微分阻尼控制器後,能有效抑制所研究系統之次同步共振。

    This thesis presents the suppression of subsynchronous resonance (SSR) occurred in power systems with steam-turbine systems and wind farm systems using a series vectorial compensator (SVeC). The first studied system employs a dynamic slip induction generator (DSIG)-based wind farm and a doubly-fed induction generator (DFIG)-based wind farm to replace the synchronous generator (SG) in the IEEE First Benchmark Model. The second studied system integrates both DFIG-based wind farm and DSIG-based wind farm to feed to the simplified Taipower System through a series-capacitor bank. The d-q axis equivalent-circuit model under three-phase balanced loading conditions is used to establish the complete studied systems. A proportional-integral- derivative (PID) damping controller of the proposed SVeC is designed by using pole-assignment approach based on modal control theory. Eigenvalue analysis of the studied systems under different series compensation ratios and various wind speeds of the wind farms are performed. Time-domain simulations under wind-speed change in wind farms and series compensation level changed in the studied systems are also carried out. The simulation results show the effectiveness of the proposed SVeC with the designed PID damping controller on suppressing SSR of the studied power systems.

    摘要...I SUMMARY...II 誌謝...VII 目錄...VIII 表目錄...XII 圖目錄...XVIII 符號說明...XXV 第一章 緒論...1 1-1 研究動機...1 1-2 相關文獻回顧...5 1-3 本文之貢獻...13 1-4 研究內容概述...14 第二章 研究系統架構與數學模型...16 2-1 前言...16 2-2 風速之數學模型...20 2-3風渦輪機之數學模型...22 2-4 質量-彈簧-阻尼器系統之模型...24 2-5 旋角控制器之數學模型...27 2-6 繞線式轉子感應發電機之數學模型...28 2-7 電力電子轉換器之數學模型...30 2-7-1 動態滑差式感應發電機之轉子電阻控制器...31 2-7-2 雙饋式感應發電機之轉子側轉換器...32 2-7-3 雙饋式感應發電機之電網側轉換器...33 2-8 同步發電機之數學模型...34 2-9 激磁機之數學模型...37 2-10 調速機之數學模型...38 2-11 蒸汽渦輪機之數學模型...39 2-12 串聯電容補償系統之數學模型...40 2-13 串聯向量補償器之模型...41 第三章 串聯向量補償器之阻尼控制器設計...44 3-1 前言...44 3-2串聯向量補償器之控制系統模型...44 3-3 以極點安置法設計比例-積分-微分震盪阻尼控制器...47 3-4 靈敏度分析...54 第四章 系統特徵值分析...59 4-1 前言...59 4-2 系統模態分析...60 4-3 研究系統架構一之穩態分析...63 4-3-1改變輸電線路上之串聯補償比...63 4-3-2改變風場之風速...72 4-4 研究系統架構二之穩態分析...80 4-4-1 風場改變串聯補償比...80 4-4-2 風場改變風速...92 第五章 系統動態響應分析...103 5-1 前言...103 5-2 研究系統架構一之動態響應分析...103 5-2-1 風場發生風速變動之動態響應...103 5-2-2 線路串聯補償比改變之動態響應...111 5-3 研究系統架構二之動態分析...118 5-3-1 風場發生風速變動之動態響應...118 5-3-2 傳輸線上串聯補償比改變之動態響應...127 第六章 結論與未來研究方向...136 6-1 結論...136 6-2 未來研究方向...138 參考文獻...140 附錄:系統參數...146 作者簡介...149

    [1] 江榮城,台灣風力發電運轉經驗及未來展望,環保資訊月刊,第97期,第11-18頁,2006年5月。
    [2] 台灣電力公司。http://www.taipower.com.tw/, retrieved date: May 12, 2017.
    [3] 經濟部能源局。http://www.moeaboe.gov.tw/, retrieved date: May 12, 2017.
    [4] ABB, http://new.abb.com/facts/references/reference_asmunti, retrieved date: May 12, 2017.
    [5] Y.-N. Yu, Electric Power System Dynamics, New York, NY, USA: Academic Press, 1983.
    [6] P. M. Anderson, B. L. Agrawal, and J. E. V. Ness, Subsynchronous Resonance in Power Systems, New York, NY, USA: IEEE Press, 1990.
    [7] M. C. Hall and D. A. Hodges, Experience with 500 kV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generation Station, New York, NY, USA: IEEE Press, 1976.
    [8] D. N. Walker, C. E. J. Bowler, R. L. Jackson, and D. A. Hodges, “Results of subsynchronous resonance tests at Mohave,” IEEE Trans. Power Apparatus and Systems, vol. 94, no. 5, pp. 1878-1889, Sep. 1975.
    [9] IEEE SSR Working Group, “First benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. PAS-96, no. 5, pp. 1565-1572, Sep. 1977.
    [10] IEEE SSR Working Group, “Second benchmark model for computer simulation of subsynchronous resonance,” IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1057-1066, May 1985.
    [11] IEEE Committee Report, “First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-98, no. 6, pp. 1872-1875, Nov. 1979.
    [12] IEEE Committee Report, “Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-104, no. 2, pp. 321-327, Feb. 1985.
    [13] IEEE Committee Report, “Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems,” IEEE Trans. Power Systems, vol. 6, no. 2, pp. 830-834, May 1991.
    [14] L. Wang and Y.-Y. Hsu, “Damping of subsynchronous resonance using excitation controllers and static VAr compensations: A comparative study,” IEEE Trans. Energy Conversion, vol. 3, no. 1, pp. 6-13, Mar. 1988.
    [15] Y.-Y. Hsu and L. Wang, “Modal control of an HVDC system for the damping of subsynchronous oscillations,” IEE Proceedings C - Generation, Transmission and Distribution, vol. 136, no. 2, pp. 78-86, Mar. 1989.
    [16] N. Mithulananthan, C. A. Canizares, J. Reeve, and G. J. Rogers, “Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations,” IEEE Trans. Power Systems, vol. 18, no. 2, pp. 786-792, May 2003.
    [17] Y. Tang and R. Q. Yu, “Impacts of large-scale wind power integration on subsynchronous resonance,” in Proc. Power and Energy Engineering Conference (APPEEC), Wuhan, China, Mar. 25-28, 2011, pp. 1-4.
    [18] L. L. Fan and Z. Miao, “Mitigating SSR using DFIG-based wind generation,” IEEE Trans. Sustainable Energy, vol. 3, no. 3, pp. 349-358, Jul. 2012.
    [19] S. O. Faried, I. Unal, D. Rai, and J. Mahseredjian, “Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators,” IEEE Trans. Power Systems, vol. 28, no. 1, pp. 452-459, Feb. 2013.
    [20] Z. Miao, “Impedance-model-based SSR analysis for type 3 wind generator and series-compensated network,” IEEE Trans. Energy Conversion, vol. 27, no. 4, pp. 984-991, Dec. 2012.
    [21] J. M. González, C. A. Cañizares, and J. M. Ramírez, “Stability modeling and comparative study of series vectorial compensators,” IEEE Trans. Power Delivery, vol. 25, no. 2, pp. 1093-1102, Apr. 2010.
    [22] F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
    [23] L. Livermore, C. E. Ugalde-Loo, Q. Mu, J. Liang, J. B. Ekanayake, and N. Jenkins, “Damping of subsynchronous resonance using a voltage source converter-based high-voltage direct-current link in a series-compensated Great Britain transmission network,” IET Generation, Transmission, and Distribution, vol. 8, no. 3, pp. 542-551, Mar. 2014.
    [24] A. M. A. Hamdan, “Geometric measures of modal controllability and observability of power system models,” Electric Power Systems Research, vol. 15, no. 2, pp. 147-155, Oct. 1988.
    [25] H. A. Mohammadpour and E. Santi, “Modeling and control of gate-controlled series capacitor interfaced with a DFIG-based wind farm,” IEEE Trans. Industrial Electronics, vol. 62, no. 2, pp. 1022-1033, Feb. 2015.
    [26] L. Wang, X. Xie, Q. Jiang, H. Liu, Y. Li, and H. Liu, “Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system,” IEEE Trans. Power Systems, vol. 30, no. 5, pp. 2772-2779, Sep. 2015.
    [27] L. Fan, C. Zhu, and Z. L. Miao, “Modal analysis of a DFIG-based wind farm interfaced with a series compensated network,” IEEE Trans. Energy Conversion, vol. 26, no. 4, pp. 1010-1020, Dec. 2011.
    [28] L. Fan, R. Kavass, Z. L. Miao, and C. Zhu, “Modeling of DFIG-based wind farms for SSR analysis,” IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 2073-2082, Oct. 2010.
    [29] M. De Prada, J. L. Domínguez-García, F. Mancilla-David, E. Muljadi, M. Singhd, O. Gomis-Bellmunt, and A. Sumper, “Type-2 wind turbine with additional sub-synchronous resonance damping,” in Proc. Green Technologies Conference, Denver, CO, USA, Apr. 4-5, 2013, pp. 226-232.
    [30] H. A. Mohammadpour and E. Santi, “SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 388-399, Apr. 2015.
    [31] K. Himaja, T. S. Surendra, and S. T. Kalyani, “Comparative study of PSS, TCSC and series vectorial compensator controllers for damping power system oscillations,” in Proc. Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG), Kurnool, India, Dec. 11-12, 2015, pp.132-137.
    [32] Z. Xu and Z. Pan, “Influence of different flexible drive train models on the transient responses of DFIG wind turbine”, in Proc. International Conference on Electrical Machines and Systems (ICEMS), Beijing, China, Aug. 20-23, 2011, pp. 1-6.
    [33] P. Chittora and N. Kumar, “An induction machine damping unit for damping SSR in a series compensated power system,” in Proc. IEEE 5th India International Conference on Power Electronics (IICPE), New Delhi, India, Dec. 6-8, 2012, pp. 1-6.
    [34] P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    [35] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
    [36] A. O. Ibrahim, T. H. Nguyen, D.-C. Lee, and S.-C. Kim, “A fault ride-through technique of DFIG wind turbine systems using dynamic voltage restorers,” IEEE Trans. Energy Conversion, vol. 26, no. 3, pp. 871-882, Sep. 2011.
    [37] Y. H. A. Rahim and A. M. L. Al-Sabbagh, “Controlled power transfer from wind driven reluctance generator,” IEEE Trans. Energy Conversion, vol. 12, no. 4, pp. 275-281, Dec. 1997.
    [38] S. M. Muyeen, J. Tamura, and T. Murata, Stability Augmentation of a Grid-connected Wind Farm, New York, NY, USA: Springer, 2009.
    [39] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd ed., New York, NY, USA: John Wiley & Sons, 2002.
    [40] D. J. Burnham, S. Santoso, and E. Muljadi, “Variable rotor-resistance control of wind turbine generators,” in Proc. IEEE Power and Energy Society General Meeting, Calgary, Alberta, Canada, Jul. 26-30, 2009, pp. 1-6.
    [41] L. Wang and D.-N. Truong, “Comparative stability enhancement of PMSG-based offshore wind farm fed to an SG-based power system using an SSSC and an SVeC,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 1336-1344, May 2013.
    [42] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
    [43] 王鈺翔,雙饋式感應發電機風場之次同步共振現象改善,國立成功大學電機工程學系碩士論文,2015年6月。
    [44] 張庭仁,應用彈性交流輸電系統於增強離岸式風場連接至電力系統之穩定度,國立成功大學電機工程學系博士論文,2013年6月。

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE