簡易檢索 / 詳目顯示

研究生: 周德威
Chou, Dei-Wei
論文名稱: 前處理與氧化後熱處理對液相氧化法生成之 砷化鎵氧化層的效應之研究
Study of Pre-treatment and Post-Oxidation Annealing Effect on the GaAs Native Oxide Prepared by the Liquid Phase Oxidation Method
指導教授: 王永和
Wang, Yeong-Her
洪茂峰
Houng,, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 113
中文關鍵詞: 氧化層砷化鎵前處理氧化後熱處理
外文關鍵詞: GaAs, pre-treatment, oxide film, post-oxidation annealing
相關次數: 點閱:85下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近室溫(40℃~70℃)液相化學輔助氧化法已經成功被應用於在成長砷化鎵的本質氧化層,且不需要任何外加能量輔助;相較於其他氧化法,此液相化學輔助氧化法在不需電位能、光照或電漿等外加能量輔助下,即有每小時100 nm(70℃下)的高成長速率。
      藉由金氧半二極體元件的電流-電壓及電容-電壓特性曲線量測,未經特殊處理的氧化層的電氣特性被加以探測。我們發現,在1 MV/cm 的電場強度下,得到漏電流密度為1~2×10-6 A/cm2。當氧化層擁有較高折射率時,即擁有較高的可靠度及崩潰電場。當氧化層折射率達2.12 時,崩潰電場幾可達7MV/cm。另外,氧化層的介電常數會隨氧化層厚度變化,變揮發及緻密化扮演氧化後熱處理中的主要角色。
      在原折射率高於1.82的情況下,主要是元素態砷或其氧化物的揮發導致折射率下降。在原折射率低於1.82的情況下,主要是緻密化鬆散結構的氧化層導致折射率上升。不論原生氧化層擁有較高或較低折射率,在經過氧化後熱處理後,折射率都一致趨向1.8。而非晶的三氧化二鎵的折射率即為1.8。而氧化層在經過氧化後熱處理600℃達6 小時以上,氧化層內會出現β態的三氧化二鎵結晶。除此之外,我們亦研究了該氧化層在不同的氣體環境下如:高純度氮氣、純氧氣、與氮氫混合氣體進行氧化後熱處理之研究。在此研究中所使用的氧化層其厚度及折射率分別為25 nm 及1.67。熱處理溫度範圍為300℃至700℃。我們發現在高溫熱處理後,氧化層厚度下降、折射率增加、表面粗糙度變小、漏電流密度變小、介電強度得以強化、平帶電壓降低而且磁滯現象也可以消除。但在氮氣與氧氣的環境下進行700℃的熱處理,上述趨勢即變差,這是因為氧化層結構已被破壞。無論如何,氧化層在氮氫混合氣體中作700℃持續30 分鐘的熱處理,表現出最佳的熱穩定性。這是由於在熱處理過程中,氫擴散到氧化層內並強化氧化層的熱穩定性的結果。
      經過硫化銨鈍化處理的砷化鎵表面再以液相化學輔助氧化法生長的氧化層之特性亦被加以探討。我們發現經過硫化銨鈍化處理後,初始氧化率變慢、氧化層折射率變小。藉由二次質譜儀縱深分析的結果,我們提出一模式來說明經過硫鈍化表面處理的砷化鎵上以液相化學輔助氧化法生長的氧化層的化學組成。此一氧化層相較於未經硫鈍化表面處理條件下所生長的氧化層,發現經硫鈍化表面處理後所生長的氧化層其漏電流密度及介電強度皆得到強化。
      除此之外,我們發現氧化後熱處理可強化氧化層阻止金(或鋁)的在熱處理時的擴散能力。可是,當熱處理溫度分別達450℃及500℃時就無法阻止金及鋁的擴散。為能承受更高熱處理溫度以阻止金(或鋁)的擴散,我們研究以TiW、Mo、TiN、TiN/Ti、Pd 等金屬薄膜作為氧化層與金(或鋁)間的阻障層。結果發現,TiW 金屬薄膜展現最佳的熱穩定性及完整性,可阻止金及鋁擴散的熱處理條件分別為550℃及500℃至少可達30 分鐘。

      Liquid phase chemical-enhanced oxidation (LPCEO) method has been successfully applied for growing native oxide films on GaAs near room temperature (40℃ to 70℃) without any extra assisted energy source. Unlike the other oxidation methods, the oxide film can be grown at relatively high oxidation rate(~100 nm/hr, at 70℃) without any assisted energy sources like electrical potential, optical illumination or plasma. By current-voltage and capacitance-voltage measurements on metal-oxide-semi-conductor structure, the electrical property of as-grown LPCEO has been characterized. It was found that the leakage current density is roughly 1~2×10-6 A/cm2 at the electric filed of 1 MV/cm. In additional, we also found that the oxides with higher refractive indices have higher reliability and breakdown voltages. The breakdown fields of ~7 MV/cm were obtained as refractive index is ~2.12. In addition, we also found that the dielectric constant of oxide films increases with increasing thickness and varies within a wide range from 3.2
      Both volatization and densification play dominant roles in postoxidation annealing effects on the LPCEO-GaAs oxide. The dominant process considered to be volatization of As or its compounds for original n>1.8, since there is a hogher As2O3 concentration within the oxide. On the other hand, densification dominates for n<1.8 because low n mean that the oxide film has a looser structure. Regardless of high or low refractive index as-grown oxide films, their refractive index approaches 1.8 after post-oxidation annealing.The refractive index of amorphous Ga2O3 is just about 1.8. Measurements of oxide depth profiles support the above points of view. Crystalline β-Ga2O3 is present in the oxide when the oxide is annealed at temperatures above 600℃ and when the annealing time exceeds 6 hours.
      Additionally, effect of annealing at various ambiences including N2, O2, and mixture of N2 (85%) and H2 (15%)) are investigated. The thickness and refractive index of as-grown oxide films in this study are ~250Å and ~1.67, respectively. The annealing temperatures range from 300℃ to 700℃. It is found that the shrinkage of oxide film thickness, the increase of refractive index, the decrease of surface roughness, the enhancement of breakdown field strength, the reduction of leakage current, flat band voltage has been reduced and hysteresis could be eliminated for all annealing conditions, except for
    annealing in the ambient atmosphere of N2 or O2 at temperature of 700℃, which may be due to oxide films were deconstructed or destroyed. However, LPCEO-GaAs oxide films
    annealed in an atmosphere of N2/H2 evaluated the best thermal stability up to temperature of 700℃. This is due to H atoms diffuse into the oxide film in the annealing processing and enhances the thermal stability of the oxide film. 
      The property of (NH4)2Sx- passivated GaAs surface followed by LPCEO oxidation has been investigated. It has found that the initial oxidation rate is suppressed and the
    refractive indices of oxide layers are lower after sulfur passivation. Based on depth-profile measured by secondary ion mass spectroscopy, a model is proposed to illustrate the
    chemical composition of the oxide layer grown by liquid phase chemical-enhanced oxidation after sulfur-passivation. In addition, we find that leakage current and breakdown electric field of oxide layers can be improved significantly with the passsivation technique.
      Moreover, it has been found that postoxidation annealing can enhance the barrier capability of GaAs oxide film against in-diffusion of Au(or Al)in annealing process.However, Au and Al always penetrate slightly into the postoxidation-annealed LPCEO GaAs oxide after annealing at 450℃ and 500℃ for 30min, respectively. In order to block interdiffusion between LPCEO-oxide and Au (or Al) under higher annealing process, we have investigated TiW, Mo, TiN, TiN/Ti and Pd films as diffusion barriers. We found that TiW has the best barrier property and the best metallurgical stability to maintain their integrity up to 550℃(for Au) or 500℃(for Al) at least for 30min.

    Abstract...i List of Tables...ix List of Figures...x 1. Introduction 1 1.1 Background and motivation...1 1.2 Organization...7 2. Preparation of LPCEO-GaAs oxide film 8 2.1 Oxidation procedure...8 2.2 Thickness and refractive index of as-grown LPCEO oxide layer...13 3. Electrical properties of the as-grown GaAs oxide layer prepared by liquid phase chemical- enhanced technique 16 3.1 Experiment...16 3.2 Current-voltage characteristics...17 3.3 Dielectric strength...17 3.4 Conduction mechanism at low field...22 3.5 Reliability...26 3.6 Capacitance-voltage characteristics...28 3.7 Summary...32 4. Effect of post-oxidation annealing on GaAs Oxides prepared by LPCEO method 34 4.1 Experiment...34 4.2 Oxide films with different refractive index..35 4.3. Effect of annealing ambient. ...39 4.3.1 Surface roughness...39 4.3.2 Thickness and refractive index of oxide film...40 4.3.3 Electrical characteristics...43 4.3.4 Chemical analysis...47 5. Properties of GaAs Oxides layer grown by liquid phase chemical-enhanced technique on sulfur-passivated GaAs surface 52 5.1 Experimental details...52 5.2 Chemical analysis...52 5.3 Growth rate of oxide layer...53 5.4 Refractive index of oxide layer...56 5.5 Oxidation mechanism...57 5.5.1 Model for the oxide growth and composition after sulfur-passivation treatment...57 5.5.2 Influence of different pre-treatment...59 5.6 Electrical properties…………………………………….………………………..60 5.7 Summary...64 6. Barrier property of the LPCEO-GaAs oxide film against in-diffusion of Al and Au 66 6.1 Background...66 6.2 Preparation of multiplayer structure...67 6.3 Au metallization...68 6.3.1Effect of postoxidation annealing...68 6.3.2 Investigation of diffusion barrier to resist interdiffusion of Au and GaAs oxide film...69 6.4 Al metallization...85 6.4.1 Effect of postoxidation annealing...85 6.4.2 Investigation of diffusion barrier to resist interdiffusion of Al and GaAs oxide film...89 7. Conclusions and future work 97 6.1 Conclusions...97 6.2 Future work...98 Bibliography 100 Publication 111 Vita 113

    [1] C. Wilmsem, “Physics and chemistry of III-V compound semi conductor interfaces,”Plenum press, New York, ch. 7, 1985.
    [2] S. K. Ghandhi, “VLSI Fabrication Principles: Silicon and Gallium Arsenide,” John Wiely & Sons Inc., New York, ch. 7, 1994.
    [3] S. P. Murarka, “ Thermal oxidation of GaAs,” Appl. Phys. Lett., vol. 26, pp. 180-181,1975.
    [4] D. N. Butcher and B. J. Sealy, “Electrical properties of thermal oxides on GaAs,”Electron. Lett., vol. 13, No. 19, pp. 558-559, 1977.
    [5] B. Schwartz, S. E. Haszko, and D. R. Wonsidler, “The influence of dopant
    concentration on the oxidation of N-type GaAs in H2O,” J. Electrochem. Soc., vol.118,pp.1229, 1971
    [6] B. Schwartz, “Prelimary results on the oxidation of GaAs and GaP during chemical etching,” J. Electrochem. Soc., vol. 118, pp. 657-658, 1971.
    [7] H. Hasegawa and H. L. Hartnagel, “Anodic oxidation of GaAs in mixed solutions of glycol and water,” J. Electrochem. Soc., vol. 123, pp. 713-723, 1976.
    [8] T. Sugano,“Oxidation of GaAs1-xPx surface by oxygen plasma and properties of
    oxide film,” J. Electrochem. Soc., vol. 121, pp. 113-118, 1974.
    [9] R. Nakamura and H. Ikoma, “Magnetically excited plasma oxidation of GaAs,” Jpn. J. Appl. Phys., Pt.2, vol. 35, pp. L8-L11, 1996.
    [10] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K.Konstadinidis, J. P. Mannaerts, M. L. Schnose and G. L. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys., vol. 77, pp. 686-693, 1995.
    [11] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang and W. J. Chang, “Effects of a chemical modification on growth silicon dioxide films on gallium arsenide,” J. Appl. Phys., vol. 82, pp. 5788-5792, 1997.
    [12] H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid Phase
    Chemical-Enhanced Oxidation for GaAs Operated Near Room Temperature,” Jpn. J.
    Appl. Phys., vol. 37, pp. L67-L70, 1998.
    [13] H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effects of pH values on the kinetics of liquid phase chemical-enhanced oxidation of GaAs,” J. Electrochem. Soc.,vol. 146, no. 6, pp. 2328-2332, 1999.
    [14] H. H. Wang, D. W. Chou, Y. H. Wang, and M. P. Houng “Properties of GaAs oxides prepared by liquid phase chemical-enhanced technique,” Physica Scripta, vol. T79, pp239-242, 1999,
    [15] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate,” IEEE Elec. Dev. Lett., vol. 20, pp. 18-20, 1999.
    [16] S. M. Sze, “Physics of Semiconductor Devices,” John Wiely & Sons, Inc., New York,1981.
    [17] R. R. Razouk and B. E. Deal, “Dependence of interface state density on silicon thermal oxidation process variables,” J. Electrochem. Soc., vol.126, pp.1573, 1979.
    [18] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” Wiley, New York, 1991.
    [19] W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, and P. Chye, “Unified defect model and beyond,” J. Vac. Sci. Technol., vol. 17, pp. 1019–1027, 1980.
    [20] J. M. Woodall and J. L. Freeouf, “GaAs metallization: some problems and trends,” J. Vac. Sci. Technol., vol. 19, pp.794-798, 1981.
    [21] W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III-V insulator interface states formation,” J. Vac. Sci. Technol., vol. 16, pp.1422-1425, 1979.
    [22] W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, “The advanced unified defect model for Schottky barrier formation,” J. Vac Sci. Thechnol. B, vol. 6, pp.1245-1248,
    1988.
    [23] R. E. Allen and J. D. Dow, “Unified theory of point-defect electronic states, and intrinsic electronic states at semiconductor surfaces,” J. Vac. Sci. Technol., vol. 19, pp.383-389, 1981.
    [24] J. L. Freeouf and J. M. Woodall, “Schottky barriers: An effective work function model,” Appl. Phys. Lett., vol. 39, pp.727-731, 1981.
    [25] F. Capasso and G. F. Williams, “Proposed hydrogenation/nitridization passivation mechanism for GaAs and other III-V semiconductor devices, including InGaAs long wavelength photodetectors,” J. Electrochem. Soc., vol. 129, pp.821-825, 1982.
    [26] Q. Wang, E. S. Yang, P. W. Li, Z. Lu, R. M. Osgood and W. I. Wang, “Electron cyclotron resonance hydrogen and nitrogen plasma surface passivation of AlGaAs/GaAs heterojunction bipolar transistor,” IEEE Elec. Dev. Lett., vol. 13, pp.83-87, 1992.
    [27] Y. Hiraoka and J. Yoshida, “Dramatic enhancement in the gain of AlGaAs/GaAs
    heterostructure bipolar transistors by surface passivation,” IEEE Trans. Elec. Dev. Ed,vol. 34, pp.721-723, 1987.
    [28] L. S. Hung, G. H. Braunstein, and L. A. Bosworth, “Epitaxial growth of alkaline earth fluoride forms on HF-treated Si and (NH4)2Sx-treated GaAs without in situ cleaning,”Appl. Phys. Lett., vol. 60, pp.201-205, 1992.
    [29] P. Viktorovitch, M. Gendry, S. K. Krawczyk, F. Krafft, P. Abraham, A. Bekkaoui, and Y. Monteil, “Improved electronic properties of GaAs surfaces stabilized with phosphorus,” App. Phys. Lett., vol. 58, pp.2387-2391, 1991.
    [30] S. Shikata, H. Okada, and H. Hayashi, “Over-passivation of sulfur treated
    AlGaAs/GaAs heterojunction bipolar transistors,” J. Vac. Sci. Technol. B, vol. 9, pp.2479-2783, 1991.
    [31] J. M. Aitken and D. R. Young, “Electron trapping by radiation-induced charge in MOS devices,” J. Appl. Phys., vol. 47, pp.1196-1198, 1976.
    [32] R. F. DeKeersmaecker and D. J. DiMaria, “Electron trapping and detrapping
    characteristics of arsenic-implanted SiO2 layers,” J. Appl. Phys., vol. 51, pp. 1085-1101, 1980.
    [33] R. A. Gdula, “The effects of processing on hot electron trapping,” J. Electrochem. Soc., vol. 123, pp.42-47, 1976
    [34] D. R. Young, E. A. Irene, D. J. DiMaria, R. F. DeKeersmaecker, and H. Z. Massound,Electron trapping in SiO2 at 295 K and 75 K,” J. Appl. Phys., vol. 50, pp.6366-6369,1979.
    [35] T. H. Ning, C. M. Osburn, and H. N. Yu, “Emission probability of hot electrons from silicon into silicon dioxide,” J. Appl. Phys., vol. 48, pp.286-293, 1979.
    [36] D. J. Dimaria, K. M. DeMeyer, and D. W. Dong, “Electrically-alterable memory using a dual electron injector structure,” IEEE Elec. Dev. Lett., vol. 1, pp.179-181, 1980.
    [37] B. E. Deal, “The current understanding of charges in the thermally oxidized silicon structure,” J. Electrochem. Soc., vol. 121, pp.198-201, 1974.
    [38] S. Wolf and R. N. Tauber ed., “Silicon Processing for the VLSI Era, Vol. 1: Process Technology,” Lattice Press, Sunset Beach, California, ch. 7, 1986,
    [39] J. Jeng, and J.G. Hwu, “Thin-gate oxides prepared by pure water anodization followed by rapid thermal densification,” IEEE Elec. Dev. Lett., vol. 17, pp. 575-579, 1996.
    [40] J. H. Stathis and E. Cartier, “The Role of Atomic Hydrogen in Degradation and Breakdown of SiO2 Films,” Extended Abstracts 1996 International Conference on Solid State Devices and Marerials, pp. 791-795, 1996.
    [41] M. C. Hersam, N. P. Guisinger, J. Lee, K. Cheng and J. W. Lyding, “Variable
    Temperature study of the Passivation of Dangling bonds at Si(100)-2×1 Reconstructed Surface with H and D,” Appl. Phys. Lett., vol. 80, pp. 201-205, 2002.
    [42] J. R. Chavez, R. A. B. Devine and W. M. Shedd, “Radiation sensitivity reduction in deuterium annesled Si- SiO2 Structures,” Appl. Phys. Lett., vol. 80, pp. 213-215, 2002.
    [43] J.Senzaki, K. Kojima, S. Harada, R. Kosugi, T. Suzuki and K. Fukuda, “Excellent effects of hydrogen postoxidation annealing on inversion channel mobility of 4H-SiC MOS-FET fabrication on (1120) face,” IEEE Elec. Dev. Lett., vol. 23, pp. 13-17,2002.
    [44] C. Y. Chen, M. J. Jeng, and J. G. Hwu, “Rapid thermal postoxidation anneal
    engineering in thin gate oxides with Al gates,” IEEE, Trans. Elec. Dev., vol. 45, pp. 247-251, 1998.
    [45] M. S. Carpenter, M. R. Melloch and T. E. Dungan, “Schottky barrier formation on (NH4)2S-treated n- and p-type (100)GaAs,” Appl. Phys. Lett., vol. 53, pp. 66-68, 1988.
    [46] G. Eftekari, “Effect of rapid thermal annealing on the barrier height of metal-GaAs with selenium interfacial layer,” Phys. Status Solidi A, vol. 139, pp. K77-K79, 1993.
    [47] M. G. Mauk, S. Xu, D. J. Arent, R. P. Mertens and G. Borghs, “Study of novel chemical surface passivation techniques on GaAs pn junction solar cells,” Appl. Phys. Lett., vol. 54, pp. 213-215, 1989.
    [48] B. J. Skromme, C. J. Sandroff, E. Yablonovitch and T. Gmitter, ”Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51,pp. 2022-2024, 1987.
    [49] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff and R. Bhat, ”Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
    [50] M. S. Carpenter, M. R. Melloch, M. S. Lundstrom and S. P. Tobin, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs pn diodes,” Appl. Phys. Lett., vol. 52, pp. 2157-2159, 1988.
    [51] G. Eftekari, “Electrical characteristicas of selenium-treated GaAs MIS Schottky diode,” Semicond. Sci. Technol., vol. 8, pp. 409-411, 1993.
    [52] J.R.Waldrop, “Direct variation of metal-GaAs schottky barrier height by the influence of Interface S, Se and Te,” Appl. Phys. Lett., vol. 47, p. 1301-1303, 1985.
    [53] T. Kikawa, S. Takatani and Y. Tezen, “Electronic properties of Se-treated SiO2/GaAs interfaces,” Appl. Phys. Lett., vol. 60, pp. 2785-2787, 1992.
    [54] G. Eftekari, “The electrical properties of sulfur-passivated and rapid thermally annealed GaAs metal-oxide-semiconductor structures with the oxide layer grown anodically,” Thin Solid Films, vol. 48, pp. 199-201, 1994.
    [55] D. C. Chiou, H. I. Wang and M. C. Chen, “Dielectric Degradation of Cu/SiO2/SiStructure during Thermal Annealing,” J. Electrochem. Soc., vol. 143 pp. 990-995,1996.
    [56] S. M. Bradley, R. A. Kydd, and R. Yamdagni, “Detection of a new polymetric
    species formed through the hydrolysis of Gallium (III) salt solutions,” J. Chem. Soc.Dalton. Trans., pp.413, 1990.
    [57] S. K. Ghandhi, “VLSI Fabrication Principles: Silicon and Gallium Arsenide,” John Wiely & Sons, Inc., New York, ch. 9, 1994.
    [58] D. E. Aspnes and A. A. Studna, “Stablity of (100) GaAs surfaces in aqueus solutions,”Appl. Phys. Lett., vol. 46, no. 1, pp. 1071-1073, 1985.
    [59] S. Osakabe and S. Adachi, “Chemical treatment effect effect of (001) GaAs surfaces in the alkaline solutions,” J. Electrochem. Soc., vol. 144, no. 1, pp. 290-294, 1997.
    [60] C. C. Chang, P. H. Citrin, and B. Schwartz, “Chemical preparation of GaAs surfaces and their characterization by Auger electron and X-ray photoemission
    spectroscopies,” J. Vac. Sci. Technol., vol. 14, no. 14, pp. 943-952, 1977.
    [61] S. M. Sze, ed., “VLSI Technology,” McGraw-Hill Book Co., New York, ch. 3. 1988.
    [62] C. W. Wilmsen, P. D. Kichner, J. M. Baker, D. T. Mclnturff, G. D. Pettis, and J. M. Wooldall, “Characterization of photochemically unpinned GaAs,” J. Vac. Sci. Technol. B, vol. 6, pp.1180-1183, 1988.
    [63] J. R. Meyer-Arendt, “Introduction to classical and modern optics,” Prentice Hall Inc.,Englewood Cliffs, N. J., 1971.
    [64] T. Sugano, “Oxidation of GaAs1-xPx surface by oxygen plasma and properties of oxide film,” J. Electrochem. Soc., vol.121, no. 1, pp.113-118, 1974.
    [65] C. W. Wilmsen ed., “Physics and chemistry of III-V compound semi conductor
    interfaces,” Plenum press, New York, ch. 3, 1985.
    [66] H. Takagi, G. Hano and I. Teramoto, “Thermal oxidation of GaAs in arsenic trioxide vapor,” J. Electrochem. Soc., vol. 125, pp. 579-581, 1978.
    [67] D. J. Dumin and J. R. Maddux, “Correlation of Stress-Induced Leakage Current in Thin Oxides with Trap Generation Inside the Oxides,” IEEE Trans. Elec. Dev., vol. 40, pp. 986-993, 1993.
    [68] H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Surface oxidation kinetics of GaAs oxide growth by liquid phase chemical-enhanced technique,” Jpn. J. Appl. Phys., pt1, vol.39, 7B,pp4477-4480, 2000.
    [69] Y. H. Jeong, K. H. Choi and S. K. Jo, “Sulfide treated GaAs MISFETs with gate insulator of photo-CVD grown P3N5 film,” IEEE Trans. Elec. Dev. Lett., vol.15,pp.251-253, 1994.
    [70] H. Hasegawa and T. Sawada, “On the electrical properties of compound
    semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states,” Thin Solid Films, vol. 103, pp. 119-140, 1983.
    [71] S. M. Sze, “Physics of Semiconductor Devices,” John Wiely & Sons, Inc., New York,1981.
    [72] E. H. Nicollian and J. R. Brews, “MOS (metal oxide semiconductor) physics andtechnology,” John Wiely & Sons, Inc., New York, 1982.
    [73] D. E. Aspnes, B.Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5 to 6.0 eV,” J. App, Phys., vol. 48, pp. 3510-3513, 1977.
    [74] F. Ren, M. W. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaert, J. Kwo, Y. K. Chen, and A. Y. Cho, “Enhanced-mode p-channel GaAs MOSFETs on
    semi-insulating substrates,” in IEDM , pp. 943-945, 1996.
    [75] B. L. Weiss and H. L. Hartnagel, “Crystallization dynamics of native anodic oxides on GaAs for device application,” Thin Solid Films, vol. 56, pp. 143-152, 1979.
    [76] O.Kubaschewski and C. B. Alcock, “Metallurgica-thermochemistry,” Permagon, New York, 1979.
    [77] C. J. Spindt, D. Liu, K. Miyano, P. L. Meissner, T. T. Chiang, T. Kendelewicz, I. Lindau, and W. E. Spicer, Vacuum ultraviolet photoelectron spectroscopy of (NH4)2S-treated GaAs (100) surface,” Appl. Phys. Lett., 55, p. 861(1989).
    [78] M. G. Kang, S. H. Sa, H. S. Suh and J. L. Lee, “Sulfidation mechanism of pre-cleaned GaAs surface using (NH4)2S solution,” Mat. Sci. & Engineering B, vol. 46, pp. 65-69,1997.
    [79] P. Olivo, B. Ricco, E. Sangiorgi, “High-field-induced voltage-dependent oxide charge,” Appl. Phys. Lett., vol. 48, pp. 424-427, 1986.
    [80] A. C. Deng and Y. C. Shiau, “Generic linear RC delay modeling for digital CMOS circuit,” IEEE Trans. Comput. –Aided Des., vol. 9, pp. 367-376, 1990.
    [81] J. Li, T. E. Seidel, and J. W. Mayer, “Copper-Based Metallization in ULSI Structures,”MRS Bull., pp. 15-22, 1994.
    [82] J. M. E. Harper, E. G. Colgan, C. K. Hu, J. P. Hummel, L. P. Buchwalter, and C. E. Uzoh, “Materials Issues in Copper Interconnections,” MRS Bull., pp. 23-29, 1994,(August).
    [83] J. V. Dilorenzo and D. D. Khandelwal, “GaAs FET Principles and Technology,”Artech House, Washington, 1985.
    [84] M. F. Zhu, A. H. Hamdi, M-A. Nicolet and J. Tandon, “Stable ohmic contact to GaAs with TiN diffusion barrier,” Thin Solid Film, vol. 119, pp. 5-9, 1984.
    [85] R. D. Remba, I. Suni and M-A. Nicolet, “Use of a TiN barrier to improve GaAs FET ohmic contact reliability,” IEEE Elec. Dev. Lett., vol. 6, pp. 437-438, 1985.
    [86] W. C. Huang, T. F. Lei and C. L. Lee, “Pd-Ge contact to n-GaAs with the TiW
    diffusion barrier,” J. Elec. Mat., vol. 23, pp. 397-401, 1994.
    [87] C. Y. Chai, J. A. Huang, Y. L. Lai, J. W. Wu, C. Y. Chang, Y. J. Chan, and H. C. Cheng,"Excellent Au/Ge/Pd ohmic contacts to n-type GaAs using Mo/Ti as the diffusion barrier,” Jpn. J. Appl.Phys., vol. 35. pp. 2110-2111, 1996.
    [88] D. S. Gardner, J. Onuki, K. Kudoo and Y. Misawa, “Encapsulated Copper
    Interconnection Devices Using Sidewell Barrier,” IEEE V-MIC Proc., pp. 99-108,
    1991.
    [89] R. Wenzel, F. Goesmann and R. Schmid-Fetzer, “Diffusion barriers in gold-metallized titanium-based contacts on SiC,” J. Mater. Sci.: Mater. in Electronics, vol. 9, pp. 109-113, 1998.
    [90] C. J. Liu and J. S. Chen, “Interdiffusions and reactions in Cu/TiN/Ti/thermal SiO2 and 109
    Cu/TiN/Ti/hydrogen silsesquioxane multilayer structures,” J. Electrochem. Soc., vol. 149,pp. G455-G490, 2002.
    [91] J. S. Jeng and J. S. Chen, “Characterization of the thermal reactions for Cu/thermal SiO2 and Cu/hydrogen silsesquioxane on silicon,” J. Electrochem. Soc., vol. 148, pp. G232-G235, 2001.
    [92] E. Kolawa, F. C. T. So, J. L. Tandon and M. A. Nicolet, “Reactively sputtered W-N films as diffusion barriers in GaAs metallizations,” J. Electrochem. Soc., vol. 134, pp.1759-1763, 1987.
    [93] A. F. Mayadas and M. Shatzkes, “Electrical resistivity model for poly- crystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B, vol. 1, pp. 1382-1389, 1970.
    [94] M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion,” J. Electrochem. Soc., vol. 145, pp. 2538 –2545, 1998.
    [95] G. Raghavan, C. Chiang, P. B. Anders, S. M. Tzeng, R. Villasol, G. Bai, M. Bohr and D. B. Fraser “Diffusion of copper through dielectric films under bias temperature stress,” Thin Solid Films, vol. 262, pp. 168-176, 1995.
    [96] T. Kouno, H. Niwa, M. Yamada,” Effect of TiN Microstructure on Diffusion Barrier Properties in Cu Metallization,” J. Electrochem. Soc., Vol. 145, pp.2164-2167, 1998.
    [97] S. H. Kim, D. S. Chung, K. C. Park, K. B. Kim, S. H. Min, “A comparative study film properties of chemical vapor deposited TiN films as diffusion barriers for Cu metallization,” J. Electrochem. Soc., vol. 146, pp. 1455-1461, 1998.
    [98] J. N. Bremmer, Y. Liu, K. G. Gruszynski, and F. C. Dall, “Cure of fox flowable oxide for intermetal dielectric applications,” in Proc. Dielectrics for ULSI Multilevel Interconnection Conf., pp. 333–336, 1997.
    [99] T. C. Chang, P. T. Liu, F. Y. Shih, and S. M. Sze, “Effects of hydrogen on electrical and chemical properties of low-k hydrogen silsesquioxane as an intermetal dielectric for nonelch back process,” Electrochem. Solid-State Lett., vol. 2, pp. 390-392, 1999.
    [100] K. L. Fang, and B. Y. Tsui, “Metal drift induced electrical instablity of porous low dielectric constant film,” J. Appl. Phys., vol. 93, no. 3, pp. 5546-5559, 2003.

    下載圖示 校內:立即公開
    校外:2004-08-02公開
    QR CODE