簡易檢索 / 詳目顯示

研究生: 呂旻璇
Lyu, Min-Syuan
論文名稱: 兼具輸入零相位角及寬輸出範圍之雙模無線充電系統設計與研製
Design and Realization of a Dual-Mode Wireless Charging System with Zero-Input Phase Angle and Wide Output Range
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 90
中文關鍵詞: 輸入零相位角無線傳能定電壓定電流充電寬輸出電壓範圍
外文關鍵詞: Input zero-phase angle, wireless power transfer, constant-voltage and constant-current charging, wide output range
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要I 英文摘要II 誌謝VI 目錄VII 表目錄IX 圖目錄X 符號說明XIII 第一章 緒論1 1-1 研究背景與文獻探討1 1-2 目的及方法2 1-3 內容大綱3 第二章 無線傳能系統與降壓轉換器電路整合設計與分析5 2-1 簡介5 2-2 換流器架構6 2-2-1 全橋換流器6 2-2-2 類半橋換流器6 2-3 諧振補償架構電路分析7 2-3-1 無線電能傳輸分析8 2-3-2 串聯-串聯補償電路分析8 2-3-3 串聯-並聯補償電路分析13 2-4 整流濾波電路分析19 2-5 降壓轉換器特性分析22 第三章 系統軟硬體設計與規劃24 3-1 簡介24 3-2 控制電路設計25 3-2-1 功率開關驅動電路設計25 3-2-2 回授電路設計26 3-2-3 無線傳能系統控制策略27 3-3 無線傳能參數設計及錯位容忍度分析29 3-3-1 無線傳能參數設計29 3-3-2 錯位容忍度分析33 3-4 整流濾波電路設計36 3-5 降壓轉換器電路設計36 3-6 無線傳能系統實體圖38 第四章 實測結果39 4-1 簡介39 4-2 類半橋換流器輸出測試40 4-3 傳能系統輸入零相位角測試44 4-4 負載變化時之諧振架構波形測試45 4-4-1 傳輸端諧振電容電壓與電流訊號測試46 4-4-2 接收端諧振電容電壓與電流訊號測試49 4-5 降壓式電路訊號測試53 4-6 系統輸出測試56 4-7 系統效率測試量測59 第五章 結論與未來研究方向64 5-1 結論64 5-2 未來研究方向65 參考文獻66

    [1] Z. Zhang, H. Pang, A. Georgiadis, and C. Cecati, “Wireless Power Transfer - An Overview,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1044-1058, February 2019.
    [2] D. Patil, M. K. McDonough, J. M. Miller, B. Fahimi, and P. T. Balsara, “Wireless Power Transfer for Vehicular Applications: Overview and Challenges,” IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 3-37, March 2018.
    [3] A. Ahmad, M. S. Alam, and R. Chabaan, “A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles,” IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp. 38-63, March 2018.
    [4] G. Wei, J. Feng, J. Zhang, C. Wang, C. Zhu, and S. Ostanin, “An Efficient Power and Data Synchronous Transfer Method for Wireless Power Transfer System Using Double-D Coupling Coil,” IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10643-10653, Nov. 2021.
    [5] J. H. Kim, B. G. Choi, S. Y. Jeong, S. H. Han, C. T. Rim, and C. T. Rim, “Plane-Type Receiving Coil with Minimum Number of Coils for Omnidirectional Wireless Power Transfer,” IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6165-6174, June 2020.
    [6] J. Dai and D. C. Ludois, “A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6017-6029, Nov. 2015.
    [7] P. Ning, J. M. Miller, O. C. Onar, and C. P. White, “A Compact Wireless Charging System for Electric Vehicles,” IEEE Energy Conversion Congress and Exposition, Denver, Colorado, USA, September 2013.
    [8] M. Del Prete, F. Berra, A. Costanzo, and D. Masotti, “Exploitation of a dual-band cell phone antenna for near-field WPT,” IEEE Wireless Power Transfer Conference, Boulder, CO, USA, May 2015.
    [9] S. Seshadri, M. Kavitha, and P. B. Bobba, “Effect of Coil Structures on Performance of a Four-coil WPT Powered Medical Implantable Devices,” International Conference on Power, Instrumentation, Control and Computing, Thrissur, India, January 2018.
    [10] T. Campi, S. Cruciani, M. Feliziani, and A. Hirata, “Wireless Power Transfer System Applied to an Active Implantable Medical Device,” 2014 IEEE Wireless Power Transfer Conference, Jeju, Korea, 2014.
    [11] F. Del Bono, A. Bontempi, N. Di Trani, D. Demarchi, A. Grattoni, and P. M. Ros, “Wireless Power Transfer Closed-Loop Control for Low-Power Active Implantable Medical Devices,” IEEE Sensors, Dallas, Texas, USA, November 2022.
    [12] C. Sezer, G. Odabas, S. Sinirlioglu, B. Kaya, and N. Altintas, “Modeling of WPT System for Small Home Appliances,” International Conference on Electrical and Electronics Engineering, Antalya, Turkey, April 2021.
    [13] Z. Katbay, D. Sounas, and M. Ismail, “Wireless Charging of IoT Devices in Smart Homes Using Retrodirective WPT,” IEEE International Midwest Symposium on Circuits and Systems, Lansing, Michigan, USA, August 2021.
    [14] K. Shiba, and M. Takahashi, “A Development of WPT Devices for Wireless-Powered Small Sensors for Home Health Care,” International Symposium on Antennas and Propagation, Sydney, Australia, October 2022.
    [15] J. -Y. Kim, H. J. Lee, J. -H. Lee, J. H. Oh, and I. -K. Cho, “Experimental Assessment of a Magnetic Induction-Based Receiver for Magnetic Communication,” IEEE Access, vol. 10, pp. 110076-110087, 2022.
    [16] X. Yan, D. Sun, Z. Li, and W. Chen, “Simulation Research on the Forward Problem of Magneto-Acoustic Concentration Tomography of Magnetic Nanoparticles With Magnetic Induction Based on the Relaxation Time of Magnetic Nanoparticles,” IEEE Access, vol. 10, pp. 56057-56066, 2022
    [17] B. -H. Choi, and J. -H. Lee, “Efficient Magnetic Resonance SIMO WPT Insensitive to Load Impedance at Short Distances,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 12, pp. 1463-1466, Dec. 2022.
    [18] O. Jonah, S. V. Georgakopoulos, and M. M. Tentzeris, “Orientation Insensitive Power Transfer by Magnetic Resonance for Mobile Devices," IEEE Wireless Power Transfer, Perugia, Italy, May 2013.
    [19] Y. Zhang, “Radio Frequency Power Source Design for Wireless Power Transfer System,” IEEE Wireless Power Transfer Conference), Montreal, QC, Canada, June 2018.
    [20] C. -C. Hua, H. -R. Chen, and Y. -H. Fang, “Inductive Power Transmission Technology for Li-ion Battery Charger,” IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, April 2013.
    [21] P. Pérez, F. Veirano, and F. Silveira, “A Compact Lithium-Ion Battery Charger for Low-Power Applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 669-673, March 2022.
    [22] P. J. Kollmeyer, M. Wootton, J. Reimers, D. F. Opila, H. Kurera, M. Kadakia, R. Gu, and T. Stien, “Real-Time Control of a Full-Scale Li-ion Battery and Li-ion Capacitor Hybrid Energy Storage System for a Plug-in Hybrid Vehicle,” IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 4204-4214, July-Aug. 2019.
    [23] M. A. Al-Hitmi, A. Iqbal, S. Rahman, P. K. Maroti, M. Meraj, and H. Mehrjerdi, “A Dual Active Bridge Based Wireless Power Transfer System for EV Battery Charging Controlled Using High Speed FPGA,” IEEE International Conference on Informatics, IoT, and Enabling Technologies, Doha, Qatar, February 2020.
    [24] A. Azad, C. R. Teeneti, R. Zane, and Z. Pantic, “DAB-based WPT Charger with Integrated Battery Management System for Fast Charging of Mobility Devices,” IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 2019.
    [25] J. Lu, G. Zhu, W. Li, and B. Li, “Load-Independent ZPA Conditions in Both Constant Current and Constant Voltage Modes of LCC-Series Compensated IPT System,” IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, June 2018.
    [26] J. Lu, G. Zhu, D. Lin, Y. Zhang, J. Jiang, and C. C. Mi, “Unified Load-Independent ZPA Analysis and Design in CC and CV Modes of Higher Order Resonant Circuits for WPT Systems,” IEEE Transactions on Transportation Electrification, vol. 5, no. 4, pp. 977-987, Dec. 2019.
    [27] Y. Shi, K. Li, H. Zhao, C. Wang, X. Li, Y. Wang, C. Yu, T. Zhang, B. Hu, and Z. Wu, “Constant Current, and Constant Voltage Output WPT System Based on LCC Compensation Network,” IEEE International Conference on Mechatronics and Automation, Beijing, China, October 2020.
    [28] Y. Chen, H. Zhang, C. -S. Shin, K. -H. Seo, S. -J. Park, and D. -H. Kim, “A Comparative Study of S-S and LCC-S Compensation Topology of Inductive Power Transfer Systems for EV Chargers,” IEEE International Symposium on Power Electronics for Distributed Generation Systems, Xi'an, China, June 2019.
    [29] S. Rezazade, A. Shahirinia, R. Naghash, N. Rasekh, and S. E. Afjei, “A Novel Efficient Hybrid Compensation Topology for Wireless Power Transfer,” IEEE Transactions on Industrial Electronics, vol. 70, no. 3, pp. 2277-2285, March 2023.
    [30] J. G. Yadav, Y. K. Yadav, and N. Kumar, “Mathematical Modelling & Simulation of Synchronous Buck Converter and Analysis of Its Simulation Results,” International Conference on IoT, Communication and Automation Technology, Gorakhpur, India, June 2023.
    [31] V. Trifa, G. Brezeanu, and E. Ceuca, “Worst-Case Input Voltage in Buck, Boost and Buck-Boost Converters,” International Semiconductor Conference, Sinaia, Romania, October 2019.
    [32] A. Singh, K. Bharti, and N. Kumar, “Comparative Study between DC-DC Buck Converter and Zero Voltage Switching Buck Converter,” IEEE International Students' Conference on Electrical, Electronics and Computer Science, Bhopal, India, 2024.
    [33] dsPIC33CK256MP508 Datasheet, Microchip Technology Incorporated, 2017.
    [34] HCPL-3120 Datasheet, Broadcom Inc, 2013.
    [35] LA55-P Datasheet, LEM International SA, 2016.
    [36] TL084 Datasheet, STMicroelectronics Incorporated, 2001.

    無法下載圖示 校內:2029-07-05公開
    校外:2029-07-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE