| 研究生: |
侯智輝 Hou, Chih-Huei |
|---|---|
| 論文名稱: |
一個使用只有前置放大器的比較器以及不需校正機制之八位元每秒取樣四億次的逐漸趨近式類比數位轉換器 An 8-bit 400-MS/s Calibration-Free SAR ADC with a Pre-amplifier-only Comparator |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 逐漸趨近式類比數位轉換器 、非二進位演算法 、多組比較器 、不需校正只有前置放大器的比較器 、高增益的動態前置放大器 |
| 外文關鍵詞: | Successive approximation register (SAR) analog-to-digital converter (ADC), redundancy (or non-binary) algorithm, multiple comparators, calibration-free, pre-amplifier-only comparator, high-gain dynamic pre-amplifier |
| 相關次數: | 點閱:179 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文呈現一個使用90奈米製程的單通道八位元每秒取樣四億次的逐漸趨近式類比數位轉換器。
我們針對應用於高速且不需複雜校正機制的逐漸趨近式類比數位轉換器,提出了一個混合的架構。在前面粗解析的位元循環裡,我們採用可提升速度的迴圈展開式的技巧,並用非二進位的搜尋演算法來容忍前後位元循環間的不匹配,以維持整體性能;針對後面細解析的位元循環,我們提出兩個電路技巧來增快速度:首先,我們提出一個只使用前置放大器作為比較器的設計,其可以減少等待比較器重置的時間;再來,我們提出一個具有高增益的動態前置放大器來減輕栓鎖器間的不匹配(mismatch)效應以達到整體精確度要求。藉由上述所提的技巧,我們的作品不需任何的校正機制。
本設計以台積電90奈米CMOS標準1P9M製程實作晶片,其核心電路面積佔了0.0276 mm2。量測結果顯示,在1.2伏特電源供應及每秒四億次的取樣頻率下,消耗功率為3.198 mW;在沒有使用複雜的校正電路下,最高的有效位元為7.15位元,每次的資料轉換所消耗的能量為56.29 fJ。
A single-channel 8-bit 400-MS/s successive-approximation register (SAR) analog-to-digital converter (ADC) in 90-nm CMOS process is presented in this thesis.
We propose a hybrid architecture for high-speed SAR ADC without a complex calibration engine. The operation speed is enhanced by adopting the loop-unrolled technique in the coarse conversions. Considering the mismatch between coarse and fine conversions, we adopt the non-binary search scheme with redundancy to maintain the overall performance. Moreover, two circuit techniques are proposed to increase the operation speed in the fine conversions. Firstly, a pre-amplifier-only comparator is proposed to shorten the critical timing path in the fine conversions. It significantly reduces the comparator reset time. Secondly, we propose a high-gain dynamic pre-amplifier to mitigate the offset mismatches among the latches for the requirement of the overall accuracy. With the above-mentioned techniques, it leads to a calibration-free design.
The proof-of-concept prototype was fabricated in a TSMC 90-nm CMOS technology. The core area occupies 0.0276 mm2. At a supply voltage of 1.2-V and sampling rate of 400-MS/s, the power consumption of the SAR ADC is 3.198 mW. The peak ENOB is 7.15 bits without complex calibration circuit. It achieves a figure of merit (FoM) of 56.29 fJ/conversion-step.
[1] R. H. Walden, “Analog-to-Digital Converter Survey and Analysis,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 539550, Apr. 1999.
[2] B. Razavi, Principles of Data Conversion System Design, New York, USA: Wiley-IEEE Press, 1995.
[3] B. Murmann. ADC Performance Survey 1997−2016. [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html, accessed Jul. 2016.
[4] J. L. McCreary et al., “All-MOS charge distribution analog-to-digital conversion techniques–part I,” IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975.
[5] B. Goll, et al., Comparators in Nanometer CMOS Technology, Berlin, Germany: Springer, 2015.
[6] Tertulien Ndjountche, CMOS Analog Integrated Circuits High-speed and Power-efficient Design, New York, CRC Press, 2011.
[7] T. Kobayashi et al., ‘‘A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture,’’ IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 523–527, April 1993.
[8] B. Wicht et al., “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 11481158, Jul. 2004.
[9] P. Nuzzo, et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Trans. Circuits and Syst. I, vol. 55, no. 6, pp. 1441–1454, Jun. 2008.
[10] Asad Abidi et al., “Understanding the regenerative comparator circuit,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2014, pp. 1–8.
[11] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271.
[12] W. Liu et al., “A 12b 22.5/45MS/s 3.0mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 380−381.
[13] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
[14] Albert. H. Chang et al., “A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), 2013, pp. 109–112.
[15] C.-C. Liu et al., “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS Process,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2009, pp. 236–237.
[16] T. Waho et al., “Non-binary successive approximation analog-to-digital converters: A survey,” in Proc. IEEE Int. Symp. Multiple-Valued Logic (ISMVL), 2014, pp. 73–78.
[17] B. Murmann et al., “On the use of redundancy in successive approximation A/D converters,” in Proc. IEEE Int. Conf. Sampling Theory and Applications (SampTA), 2013, pp. 1–4.
[18] R. Vitek, et al., “A 0.015 mm2 63 fJ/conversion-step 10-bit 220MS/s SAR ADC with 1.5 b/step redundancy and digital metastability correction,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1–4.
[19] F. Kuttner et al., “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-µm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2002, pp. 176−177.
[20] S.-W. M. Chen et al., “A 6-bit 600-MS/s 5.3mW asynchronous ADC in 0.13 µm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 26692680, Dec. 2006.
[21] T. Ogawa et al., “Non-binary SAR ADC with digital error correction for low power applications,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2010, pp. 196199.
[22] H.-Y. Tai et al., “A 3.2 fJ/c.-s. 0.35 V 10 b 100 kS/s SAR ADC in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92–93.
[23] Toru Okazaki, et al., “A Design Technique for a High-speed SAR ADC Using Non-binary Search Algorithm and Redundancy,” in Proc. IEEE Asia Pacific Microwave Conf. (APMC), Dec. 2013, pp. 506508.
[24] Hyeok-Ki Hong et al., “A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1−4.
[25] C.-C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 386–387.
[26] P. Harpe et al., “A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 472−474.
[27] A. Hastings, The Art of Analog Layout. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[28] L. Kull et al., “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2013, pp. 468−469.
[29] V. Giannini et al., “An 820 µW 9b 40 MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 238–239.
[30] C.-C. Liu et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731740, Dec. 2010.
[31] B. P. Ginsburg et al., “Dual time-interleaved successive approximation register ADCs for an ultra-wideband receiver,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 247–257, Feb. 2007.
[32] U.-F. Chio et al., “A self-timing switch-driving register by precharge-evaluate logic for high-speed SAR ADCs,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2008, pp. 1164–1167.
[33] J. Yang et al., “A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1469–1478, Aug. 2010.
[34] Y. Zhu et al., “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, pp. 1111–1121, Jun. 2010.
[35] R. Kapusta et al., “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 472–473.
[36] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.
[37] Pedro M. Figueiredo et al., “A 90nm CMOS 1.2V 6b 1GS/s Two-Step Subranging ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2006, pp. 80–81.
[38] Y.-Z. Lin et al., “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2010, pp. 243–244.
[39] G. Van der Plas et al., ‘‘A 150 MS/s 133 W 7 bit ADC in 90 nm Digital CMOS,’’ IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2631–2640, Dec. 2008.
[40] Y.-Z. Lin et al., “A 5b 800MS/s 2mW asynchronous binary-search ADC in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 80–81.
[41] Y.-Z. Lin et al., ‘‘A 0.9-V 11-bit 25-MS/s Binary-Search SAR ADC in 90-nm CMOS,’’ in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2011, pp. 69–72.
[42] Hung-Yen Tai et al., “A 0.85fJ/conversion-step 10b 200KS/s Subranging SAR ADC in 40nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 196-198.
[43] Y.-S. Hu et al., “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s sub-ranging SAR ADC in 40nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2014, pp. 81−84.
[44] Michael P. Flynn et al., “A 1mW 71.5dB SNDR 50MS/s 13b Fully Differential Ring-Amplifier-Based SAR-Assisted Pipeline ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 458-460.
[45] Tao Jiang et al., “Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR ADC in 40nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2010, pp. 1−4.
[46] M.-J. E. Lee et al., ‘‘Low-power area-efficient high-speed I/O circuit techniques,’’ IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1591–1599, Nov. 2000.
[47] M. Miyahara et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269272.
[48] B. Verbruggen et al., ‘‘A 2.2 mW 1.75 GS/s 5 Bit Folding Flash ADC in 90 nm Digital CMOS,’’ IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 874–882, March 2009.
[49] P. Harpe et al., “Calibration of Ultra Low-Power Time-Interleaved SAR ADCs,” in Proc. IEEE New Circuits and Systems Conference (NEWCAS), 2012, pp. 361364.
[50] F. H. Gebara et al., ‘‘A body-driven offset cancellation technique in PD-SOI,’’ International Conference on Microelectronics, May 2004, Vol. 2, pp. 567–570
[51] Y.-S. Shu et al., ‘‘A 6b 3GS/s 11mW Fully Dynamic Flash ADC in 40 nm CMOS with Reduced Number of Comparators,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2012, pp. 26–27.
[52] V. H.-C. Chen et al., ‘‘An 8.5mW 5GS/s 6b flash ADC with dynamic offset calibration in 32 nm CMOS SOI,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2013, pp. 264–265.
[53] V. Hariprasath et al., “Merged capacitor switching based SAR ADC with highest switching energy efficiency,” Electron. Lett., vol. 46, no. 9, pp. 620–621, Apr. 2010.
[54] C.-C. Liu et al., “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18μm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, 2010, pp. 241–242.
[55] Hung-Yen Tai et al., “A 0.004 mm2 single-channel 6-bit 1.25GS/s SAR ADC in 40nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013, pp. 277–280.
[56] P. M. Figueiredo et al., ‘‘Kickback noise reduction techniques for CMOS latched comparators,’’ IEEE Trans. Circuits Syst. II, vol. 53, no. 7, pp. 1591–545, Jul. 2006.
[57] D. Schinkel et al., “A double-tail latch-type voltage sense amplifier with 18 ps setup + hold time,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 314315.
[58] M. van Elzakker et al., “A 1.9 µW 4.4 fJ/conversion-step 10 b 1 MS/s charge
-redistribution ADC,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 244245.
[59] M. Miyahara et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269272.
[60] M. Miyahara et al., ‘‘A low-offset latched comparator using zero-static power dynamic offset cancellation technique,’’ in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2009, pp. 233–236.
[61] Jen-Huan Tsai et al., “A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching,” IEEE J. Solid-State Circuits, vol. 50, no. 6, pp. 13821398, Jul. 2015.
[62] H.J.M. Veendrick et al., “The behaviour of flip-flops used as synchronizers and prediction of their failure rate.,” IEEE J. Solid-State Circuits, vol. 15, no. 2, pp. 169–176, Apr. 1980.
[63] B. Murmann et al., “Impact of scaling on analog performance and associated modeling needs,” IEEE Trans. Electron Device, vol. 53, no. 9, pp. 21602167, Sep. 2006.
[64] Frank van Goes et al., “A 1.5mW 68dB SNDR 80MS/s 2x interleaved SAR-assisted pipeline ADC in 28nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2014, pp. 200−202.
[65] M. Dessouky et al., “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electron. Lett., vol. 35, pp. 8–10, Jan. 1999.
[66] G. Huang et al., “A fast bootstrapped switch for high-speed high-resolution A/D converter,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), 2010, pp. 382–385.
[67] Shao-Hua Wan et al., “A 10-bit 50-MS/s SAR ADC with Techniques for Relaxing the Requirement on Driving Capability of Reference Voltage Buffers,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013, pp. 293–296.
[68] H. J. Jeon et al., “A CMOS low-power low-offset and high-speed fully dynamic latched comparator,” in Proc. IEEE Int. SOC Conf., 2010, pp. 285–288.
[69] H. J. Jeon et al., “Offset voltage analysis of dynamic latched comparator,” in Proc. Int. MWSCAS Conf., Aug. 2011, pp. 1–4.
[70] P. Harpe et al., “A 12fJ/conversion-step 8bit 10MS/s asynchronous SAR ADC for low energy radios,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), 2010, pp. 214−217.
[71] G.-Y. Huang et al., “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2013. pp. 289–292.
[72] H. Wei et al., “A 0.024mm2 8b 400MS/s SAR ADC with 2b/cycle and resistive DAC in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2011, pp. 188–190.
[73] Vaibhav Tripathi et al., “An 8-bit 450-MS/s single-bit/cycle SAR ADC in 65-nm CMOS,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), 2013, pp. 117−120.
[74] Y.-C. Lien et al., ““A 4.5-mW 8-b 750-MS/s 2-b/Step Asynchronous Subranged SAR ADC in 28-nm CMOS Technology,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, 2012, pp. 88–89.