研究生: |
劉家銘 Liu, Jia-Ming |
---|---|
論文名稱: |
多功能載具之結構和穩定性分析 Structural and Stability Analyses of an Intelligent Robot with Functions of Mobility, Lifting, and Standing |
指導教授: |
蘇芳慶
Su, Fong-Chin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 電動輪椅 、站立架 、有限元素分析 |
外文關鍵詞: | Power Wheelchair, Standing Frame, Finite Element Analysis |
相關次數: | 點閱:79 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
輪椅是當今最常被使用者用來增加移動性的行動載具,但不能協助其站立及移位,站立式輪椅雖可協助使用者站立,但卻不能提供移位(transfer)功能,而一般站立架(standing frame or table)設計多數僅提供失能者站立功能,少有在移位及移動上兼備良好功能者。目前市面上並沒有輔具可同時滿足使用者在移動、協助站立及移位功能上的需求,進而增進失能者及照顧者在使用輔具上的便利性,並改善病人在日常生活上的功能與品質。
本研究目的是設計分析一利用三個主支架搭配行星齒輪及兩組DC馬達三個自由度的機械人,兼具移位、舉起和站立功能。此研究主要進行機構的結構分析及系統的穩定性模擬。其結構乃是以行星齒輪精密定位,將主支架結合來完成升降的動作及定位。本設計強調輕量化,故使用材質則以重量較輕的鋁合金為主,輔以有限元素法來分析整體升降設計結構之強度與安全係數是否達到安全要求。而人機系統的動態穩定性,依各桿件和人體肢段的質心位置,建立動態穩定性系統,分析整體人機系統總運動方向是否超過其支撐基底面。期盼達到輕量化、安全性及模組化之設計目標。
Wheelchairs are the most popularly used for mobility of the disabled. However, they do not provide standing and transfer functions. Although the power standing wheelchair helps the users stand, it does not provide transfer function. The standing frame or table is used to help the disabled stand, but usually lacks functions of transfer and mobility. The lift is designed for transfer of the patients, but it lacks the functions of mobility and standing. In the market, there is great demand to design an innovative, lightweight and intelligent robot for the disabled to provide the functions of mobility, lifting, and standing in order to improve their life quality.
This purpose of this study was to design an intelligent robot with three degrees of freedom to provide the functions of mobility, transfer and standing for the disabled with emphasis on structural and stability analyses. The fundamental mechanisms consisted of four linkages and two planetary gears driven by DC motors in order to provide positioning and movements in terms of one translation and two rotations. The aluminum alloy was chosen to construct structure of the linkage to reduce the weight. The finite element meshes were constructed to analyze the overall strength of the structure at various lifting positions with consideration of safety factor. Then, the design of lightweight structure with enough strength could be achieved by finite element analysis. In addition, a dynamic equation of motion of the whole user-machine system was developed using the center of mass of each human segments and mechanical linkages for dynamic stability. It was used to analyze and check whether the sum of external forces was directed beyond the base of support of this robot. Hopefully, the intelligent robot is lightweight, safe and effective to provide the functions of mobility, lift and standing for the disabled.
[1]N. R. Altland , F. Kugler. "Pressure detection system for standing table." Arch Phys Med Rehabil 51(7): p.432-5,1970.
[2]I. Odeen , E. Knutsson. "Evaluation of the effects of muscle stretch and weight load in patients with spastic paraplegia." Scand J Rehabil Med 13(4): p.117-21.1981.
[3]F. Tremblay , F. Malouin, et al. "Effects of prolonged muscle stretch on reflex and voluntary muscle activations in children with spastic cerebral palsy." Scand J Rehabil Med 22(4): p.171-80,1990.
[4]S. Wilmshurst , K. Ward , et al. "Mobility status and bone density in cerebral palsy." Arch Dis Child 75(2): p.164-5,1996.
[5]K. E. Chad , D. A. Bailey , et al. "The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy."J Pediatr 135(1): p.115-7,1999.
[6]E. D. deBruin , P. Frey-Rindova, et al. "Changes of tibia bone properties after spinal cord injury: effects of early intervention." Arch Phys Med Rehabil 80(2): p.214-20,1999.
[7]R. B. Dunn, J. S. Walter, et al. "Follow-up assessment of standing mobility device users."Assist Technol 10(2): p.84-93,1998.
[8]J. S. Walter, P. G. Sola, et al. "Indications for a home standing program for individuals with spinal cord injury." J Spinal Cord Med 22(3): p.152-8,1998.
[9]H. Hoenig, T. Murphy, et al. "Case study to evaluate a standing table for managing constipation." SCI Nurs 18(2): p.74-7,2001.
[10]K. H. Tsai, C. Y. Yeh, et al. "Effects of a single session of prolonged muscle stretch on spastic muscle of stroke patients." Proc Natl Sci Counc Repub China B 25(2): p.76-81,2001.
[11] http://www.pgdt.com/default.html
[12] http://www.dynamiccontrols.com/
[13]R.X. Chen, L.G.. Chen , L. Chen, “System design consideration for digital wheelchair controller,”IEEE Trans. on Industrial Electronics, 47(4), p.898 – 907, 2000.
[14]R. Nilssen, S.E. Skaar, R. Lund , T. Skjellnes , S. Ovrebo , E. Lovli, “Design of a permanent magnet synchronous motor integrated in the wheel rim on wheelchairs,” in Proceeding of the 2005 European Conference on Power Electronics and Applications, p. 1-8.
[15]Y.P. Yang , Z.H. Lee, “A novel wheelchair powered by dual rim motors,” in Proceeding of the IEEE Conference, p.1284-1289,2009.
[16]M. Poplawski , M. Bialko , “Implementation of parallel fuzzy logic controller in FPGA circuit for guiding electric wheelchair,” in Proceeding of the 2008 Conference on Human System Interactions, p.405 – 408,2008.
[17]C.H. Kuo , H.W. Yeh , C.E. Wu , K.M. Hsiao, “Development of Autonomous Robotic Wheelchair Controller Using Embedded Systems” in Proceeding of the IEEE IECON, 5(8),p.3001–3006, 2007.
[18]Altera , NiosII Development Kit , Stratix Edition – Getting Started user Guide, 2006.
[19]B.W. Bomar, “Implementation of Microprogrammed control in FPGAs,” IEEE Trans. on Indust. Electr. 49(2): p.415-422.
[20]Y.S. Kung, M.S. Wang , T.Y. Chuang, “FPGA-Based Self-Tuning PID Controller using RBF Neural Network and its Application in X-Y Table,” in Proceeding of the 2009 IEEE ISIE, p.694~699, 2009.
[21] X. Shao , D. Sun, “A FPGA-based Motion Control IC Design,” in Proceedings of the IEEE ICIT,p.131-136, 2005.
[22]R.A. Cooper , R. Cooper, Trends and Issues in Wheeled Mobility Technologies. Center for Inclusive Design and Environmental Access.
[23]R.A. Cooper , Wheelchair Selection and Configuration. United States of America, Demos, 1998.
[24] Independence Technology , A Johnson & Johnson Company,
http://www.independencenow.com/home.html
[25]J.A. Clark and R.B. Roemer , Voice controlled wheelchair. Arch Phys Med Rehabil, 58(4): p.169-75,1977.
[26]M. Youdin , et al., A voice controlled powered wheelchair and environmental control system for the severely disabled. Med Prog Technol, 7(2-3): p.139-43, 1980.
[27]R.C. Simpson and S.P. Levine, Voice control of a powered wheelchair. IEEE Trans Neural Syst Rehabil Eng, 10(2): p.122-5, 2002.
[28]S.P. Levine , et al., The NavChair Assistive Wheelchair Navigation System. IEEE Trans Rehabil Eng, 7(4): p.443-51, 1999.
[29]R.C. Simpson , S.P. Levine, Automatic adaptation in the NavChair Assistive Wheelchair Navigation System. IEEE Trans Rehabil Eng, 7(4): p.452-63, 1999.
[30] 必翔實業股份有限公司, http://www.pihsiang.com.tw/
[31] 中華民國專利資訊檢索系統 http://twpat.tipo.gov.tw/tipotwoc/tipotwkm