簡易檢索 / 詳目顯示

研究生: 李建輝
Li, Jian-Hui
論文名稱: 線圈參數對於無線電力傳輸效率之影響
Influence of Coil Design on Efficiency of Wireless Power Transmission
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 效率電感值頻率品質因素氣隙
外文關鍵詞: Efficiency, Inductance, Frequency, Quality factor, Air gap
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在於研究無線電力傳輸之效率,從文獻中整理出影響其效率之因素,並對其進行實驗與探討。一開始先針對無線電力傳輸之應用層面及基礎理論其做一詳細探討,然後討論對於整體電路傳輸效率之重要影響參數,且依循整體電路之傳輸效率做適當之設計。規劃7種不同口徑、長度之繞線架,對不同之一次側、二次側電感繞組進行實驗與分析。首先,對於不同口徑之線圈進行實驗,探究其直徑對於其傳輸效率影響之深淺。第二,針對集膚效應、進接效應進行實驗與討論,瞭解其影響無線電力傳輸效率之輕重。第三,對於二次側線圈不同擺放角度做測試,瞭解其對於無線電力傳輸效率之影響多寡。最後,對於有無鐵磁芯之線圈進行實驗,瞭解其影響效率之多寡。本電路之一次側、二次側均採用串聯諧振結構,並以2.8cm~10cm之氣隙規格進行無線電力傳輸效率測試。藉由以上之實驗與整理,能更清楚瞭解於線圈設計時,需注意之參數,並容易在效率與成本之間做良好選擇。

    This study based on the efficiency of wireless power transmission, collect that factors for the efficiency from references, then study for the efficiency. At first the applications and fundamental principles of wireless power transmission systems are studied, then the thesis followed by the discussion of the factors associated with the operating of system. The design of coupling structure is established by the circuit. Planning 7 different diameter, length of the winding frame, for primary, secondary inductor winding experiment and analysis. First, for the coil on different diameter to experiment, to explore the effect on the efficiency by diameter. Second, for the skin effect, proximity effect of the experiment and then discuss, understand these effects on wireless power transmission efficiency. Thirdly, the secondary coils placed in different angles to do the test for the efficiency, to understand the influence on efficiency of wireless power transmission. The primary, secondary circuit use of series resonant structure, and to experiment for the efficiency of wireless power transmission in the gap 2.8cm to 10cm. By these experiments, a better understanding for importance of the parameters on the coil design, and trade off on the efficiency and the cost for the efficiency easily.

    第一章 緒論 1 1.1 研究背景 1 1.2 論文動機 4 第二章 無線電力傳輸之原理 6 2.1 前言 6 2.2 感應線圈之動作原理 6 2.3 感應磁場之特性 9 2.4 感應線圈非理想效應 10 2.4.1 集膚效應 10 2.4.2 近接效應 11 2.5 鐵芯結構之選擇 13 第三章 電路系統之理論與架構 18 3.1 無線電力傳輸等效模型分析 18 3.2 耦合係數之量測 20 3.3 反射阻抗分析 22 3.4 二次側之耦合功率 23 3.5 RLC諧振電路特性 23 3.6 一次側線圈驅動電路設計 27 第四章 實驗結果與討論 31 前言 31 4.1 線圈阻抗之測量 33 4.2 線圈電感之測量 36 4.3 耦合係數量測 37 4.4 效率量測 38 4.4.1 氣隙、耦合係數、口徑大小於無線電力傳輸效率之影響 38 4.4.2 層數於無線電力傳輸效率之影響 39 4.4.3 線圈擺放角度於無線電力傳輸效率之影響 40 4.4.4 導磁鐵芯於無線電力傳輸效率之影響 41 第五章 結論與未來研究方向 42 5.1 結論 42 5.2 未來研究方向 42 參考文獻 44 表目錄 表1-1 無線電力傳輸參數表 2 表3-1 諧振電路之應用 26 圖目錄 圖1-1 無線電力傳輸之基本電路架構 1 圖1-2 MIT共振互感式能量傳遞圖 2 圖1-3 Intel研發之無線電力傳輸系統 3 圖1-4 特斯拉線圈(Tesla coil) 3 圖1-5 無線電力傳輸之應用範圍 5 圖2-1 電磁效應 6 圖2-2 螺旋管導線之電磁場分佈 7 圖2-3 載流之線圈與其磁場強度 7 圖2-4 線圈半徑與磁場強度之關係曲線 8 圖2-5 法拉第電磁感應 8 圖2-6 法拉第-冷次定律 9 圖2-7 (a)無鐵芯之線圈磁通分佈 9 圖2-7 (b)加入鐵芯之線圈磁通分佈 9 圖2-8 渦電流效應 10 圖2-9 導線內之渦電流方向 11 圖2-10 集膚深度 11 圖2-11 頻率與集膚深度關係圖 11 圖2-12 兩鄰近載流導線之磁場影響 12 圖2-13 導線內電流密度 12 圖2-14 繞線層數與交流電阻之關係曲線 13 圖2-15 三種鐵芯結構之繞線方法 14 圖2-16 I型、U型及E型鐵芯結構內部磁場分佈圖 14 圖2-17 II、EE型鐵芯結構之等效磁路 15 圖2-18 II、EE型鐵芯結構之簡化等效磁路 16 圖2-19 II、EE型鐵芯結構氣隙與耦合效率之關係曲線 17 圖3-1 變壓器耦合電路 18 圖3-2 以相依電源表示之變壓器耦合電路 19 圖3-3 變壓器之T型等效模型 19 圖3-4 加入理想變壓器之等效模型 20 圖3-5 考慮損失之變壓器等效電路 20 圖3-6 計算耦合係數之變壓器等效模型 21 圖3-7 以等效阻抗及相依電源表示之變壓器耦合電路 22 圖3-8 包含二次側反射阻抗之一次側電路 22 圖3-9 二次側耦合能量示意圖 23 圖3-10 RLC串聯諧振電路 24 圖3-11 RLC串聯諧振等效電路 24 圖3-12 RLC串聯諧振電路之電壓電流向量圖 24 圖3-13 阻抗、頻率關係曲線 25 圖3-14 電流、頻率關係曲線 25 圖3-15 電壓電流相位差、頻率關係曲線 25 圖3-16 RLC串聯諧振電路Q值對頻寬之影響 26 圖3-17 RLC串聯諧振電路電感、電容電壓與頻率之關係曲線 26 圖3-18 IR2153觸發電路 27 圖3-19 D類半橋諧振電路 28 圖3-20 D類半橋諧振電路波形圖 28 圖3-21 D類半橋諧振電路動作圖 30 圖4-1 線圈繞組(線徑0.16mm)實部阻抗與頻率之關係曲線 34 圖4-2 線圈繞組(線徑0.574mm)實部阻抗與頻率之關係曲線 34 圖4-3 加入鐵芯之線圈繞組(線徑0.16mm)實部阻抗與頻率之關係曲線 35 圖4-4 繞製層數對於線圈阻抗之關係曲線 36 圖4-5 線圈繞組(線徑0.16mm)電感值與頻率之關係曲線 36 圖4-6 有無鐵芯之線圈繞組(線徑0.16mm)電感值之關係曲線 37 圖4-7 耦合係數與氣隙之關係曲線 38 圖4-8 效率測試之整體實驗電路 38 圖4-9 氣隙、耦合係數、口徑大小與效率之曲線關係 39 圖4-10 層數與效率之曲線關係 40 圖4-11 線圈擺放角度與無線電力傳輸效率之關係曲線 40 圖4-12 本實驗使用之線圈與鐵芯實體圖 41 圖4-13 導磁鐵芯(EE型)對於無線電力傳輸效率之關係曲線 41

    [1] 全球無線電源聯盟(The Wireless Power Consortium).2009. Technology overview. Available at:www.wirelesspowerconsortium.com . Accessed 26 February 2010.
    [2] 資策會MIC ITIS計畫 龔俊光產業分析師,」無線電力傳輸技術與應用之機會探索」,台灣區電機電子工業同業公會電子報,第 82 期,2009年8月5號。
    [3] 通訊博物館,http://macao.communications.museum/chi/Exhibition/secondfloor /moreinfo/2_4_2_Transformer.html
    [4] 陳乃塘,」無線電力傳輸技術大躍進WiTricity點亮無限可能」,新通訊元件雜誌,第91期,2008年9月號。
    [5] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, 「Wireless power transfer via strongly coupled magnetic resonances,」 Science Express, vol. 317, no. 6, pp. 83-86, July 2007.
    [6] Franklin Hadley, Institute for Soldier Nanotechnologies,」Goodbye wires!MIT team experimentally demonstrates wireless power transfer, potentially useful for powering laptops, cell phones without cords」,MITnews,2007/07/07.
    [7] 「Intel's Wireless Power」, http://www.danielfischer.com/2008/08/22/ intels-wireless-power-is-not-new-is-it/
    [8] W. C. Brown, 「The History of Power Transmission by Radio Waves,」 IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, Sep. 1984.
    [9] J. O. McSpadden and J. C. Mankins, 「Space Solar Power Programs and Microwave Wireless Power Transmission Technology,」 IEEE Microwave Magazine, vol. 3, no. 4, pp. 46-57, Dec. 2002.
    [10] M. Cheneyet, 「Tesla: Man Out of Time,」 Simon and Schuster, October 2, 2001.
    [11] Grotz and Toby, 「Project Tesla: Wireless Transmission of Power; Resonating Planet Earth,」 Theoretical Electromagnetic Studies and Learning Association, Inc.
    [12] T. C. Martin, and N. Tesla, 「The Inventions, Researches and Writings of Nikola Tesla, with Special Reference to His Work in Polyphase Currents and High Potential Lighting,」 New York: The Electrical Engineer, Page 188, 1894.
    [13] 陳嘉緯,非接觸式感應充電杯之研製,國立成功大學電機工程學系碩士論文,2008。
    [14] 萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系碩士論文,2007。
    [15] Feynman and Richard., 「The Feynman Lectures on Physics,」 Addison-Wesley, 2006.
    [16] H. E. Knoepfel, 「Magnetic Fields:A Comprehensive Theoretical Treatise for Practical Use,」 Wiley, Page 4, 2000.
    [17] R. P. Feynman, R. B. Leighton ,and M. L. Sands, 「The Feynman Lectures on Physics,」 San Francisco: Pearson/Addison-Wesley. Volume 2, Page 17-2, 2006.
    [18] Furlani and P. Edward, 「Permanent Magnet and Electromechanical Devices:Materials, Analysis and Applications,」 Academic Press Series in Electromagnetism, 2001.
    [19] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., Addison-Wesley, 1989.
    [20] N. Xi and C. R. Sullivan, 「An improved calculation of proximity-effect loss in high-frequency windings of round conductors, 」in Proc. IEEE PESC, 2003, vol. 2, pp. 853-860.
    [21] J. A. Ferreira, 「Improved analytical modeling of conductive losses in magnetic components, 」 IEEE Trans. Power Electron., vol. 9, no. 1, pp. 127-131, 1994.
    [22] N. Xi and C. R. Sullivan, 「Simplified high-accuracy calculation of eddy-current loss in round-wire windings,」 in Proc. IEEE PESC, 2004, vol. 2, pp. 873-879.
    [23] S. Eroglu, G. Friedman, and R. L. Magin, 「Estimate of losses and signal-to-noise ratio in planar inductive micro-coil detectors used for NMR,」 IEEE Trans. Magn., vol. 37, no. 4, pp. 2787-2789, 2001.
    [24] A. W. Lotfi, P. M. Gradzki, and F. C. Lee, 「Proximity effects in coils for high frequency power applications,」 IEEE Trans. Magn., vol. 28, no. 5, pp. 2169-2171, 1992.
    [25] A. W. Lotfi and F. C. Lee, 「Proximity losses in short coils of circular cylindrical windings,」 in Proc. IEEE PESC, 1992, vol.2 pp. 1253-1260.
    [26] A. Schellmanns, P. Fouassier, J. P. Keradec, and J. L. Schanen, 「Equivalent circuits for transformers based on one-dimensional propagation:accounting for multilayer structure of windings and ferrite losses,」 IEEE Trans. Magn., vol. 36, no. 5, pp. 3778-3784, 2000.
    [27] 周瑋潔,自走機器人用非接觸式分段激發感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2008。

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE