簡易檢索 / 詳目顯示

研究生: 劉永宏
Liu, Yung-Hung
論文名稱: 氮化鋁薄膜體聲波共振器分析與研製
Analysis and Fabrication of AlN Thin Film Bulk Acoustic- Wave Resonators
指導教授: 李炳鈞
Li, Bing-Jin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 共振器塊體聲波
外文關鍵詞: Resonator, FBAR
相關次數: 點閱:88下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文討論分析與研製薄膜塊體聲波共振器(Film Bulk Acoustic-wave Resonator FBAR),FBAR的結構為在矽基板上以白金為底電極,鋁為上電極,以反應式射頻磁控濺鍍機成長高C軸優選取向的氮化鋁薄膜,以激發出縱波並於薄膜表面處產生反射。本論文的FABR結構為背向蝕刻矽基板產生聲波空腔,使元件於氮化鋁薄膜內產生奇、偶數模態的串聯共振頻率和並聯共振頻率,且氮化鋁薄膜的厚度減少時,則共振頻率會隨之上升。

      實驗為探討共振器不同電極的形狀及面積對寄生模態與共振時的輸入阻抗值的影響,結果顯示電極為非對稱的形狀可抑制寄生模態的產生,電極的面積越小則共振時的輸入阻抗值越大。利用ADS模擬軟體以萃取FBAR元件於基頻共振頻率的MBVD等效電路參數值,考慮矽基板的寄生電容與電阻效應,可使模擬值與量測值接近,並將兩者的有效機電耦合係數 、Q值作比較。

     The paper presents the analysis and fabrication of thin film bulk acoustic wave resonator(FBAR). The FBAR structures are made of piezoelectric aluminum nitride layers which are fabricated on silicon wafer using the technique of RF magnetron sputtering of . Aluminum and platinum are the top and bottom electrodes. A longitudinal bulk wave can be excited within the highly C-axis-oriented piezoelectric AlN film and reflects from the surface boundaries of the AlN membrane. Similar to an acoustical cavity, the FBAR
    structure exhibits parallel and series electrical resonance responses, corresponding to
    even- and odd-order modes, and decreasing the thickness of the AlN film increases the resonance frequency. The results show that the shape of top electrodes can affect the resonance of the FBAR structure with spurious modes. Moreover, less symmetric electrodes can inhibit spurious resonance modes. Effects of resonator size on input impedance are also discussed. The Modified Butterworth-Van Dyke model basing on the fundamental resonant frequency response of resonators is used for the analysis of the structure. The resonant frequencies, effective electromechanical coupling coefficients( ) and quality factors both from the modeling and experimental measurements will be compared and discussed.

    目錄 第一章 序論 ………………………………………………………………………………1 1.1 研究背景與動機機…………1 1.2論文架構…………4 第二章 FBAR的理論設計與製程原理…………………………………………………..4 2.1 聲波運動方程式…………………………………………………………………….6 2.2 壓電效應………………………………………………………………………….....9 2.3 壓電薄膜特性……………………………………………………………………...15 2.4 Modified BVD等效電路模型……………………………………………………...16 2.5 薄膜體聲波共振器原理…………………………………………………………...18 2.6 矽基板非等向性濕式蝕刻原理…………………………………………………...22 2.7 反應式離子蝕刻原理……………………………………………………………...23 2.8 反應性射頻磁控濺鍍原理………………………………………………………...23 2.9 X光繞射原理…………………..…………………………..………………………24 2.9.1布拉格定律………..……………………………………………………...…24 2.9.2 X光繞射分析方法………………..…………………………………………25 第三章 研究方法與步驟…………………………………………………………………26 3.1 FBAR製程步驟…………………………………………………………………….26 3.1.1標準RCA清洗……………………………………………………………….27 3.1.2低應力SixNy薄膜沉積……………………………………………………….27 3.1.3 RIE蝕刻窗和KOH蝕刻空腔………………………………………………..27 3.1.4底電極沉積…………………………………………………………………...28 3.1.5濺鍍氮化鋁薄膜……………...………………………………………………29 3.1.6蝕刻氮化鋁薄膜……………………………………………………………...29 3.1.7上電極沉積…………………………………………………………………...29 3.1.8 RIE蝕刻空腔多餘的矽………………………………………………………29 3.2 氮化鋁薄膜品質分析……...………………………………………………………29 3.3 FBAR元件量測…………………………………………………………………….29 3.4 FBAR元件設計…………………………………………………………………….30 第四章 實驗結果與討論…………………………………………………………………32 4.1 氮化鋁薄膜分析…………………………………………………………………...32 4.2元件量測結果與討論………………………………………………………………37 4.2.1 FBAR正方形上電極量測結果………..……………………………………..41 4.2.2 FBAR矩形、圓形、非對稱形上電極量測結果……………………………..47 4.2.3 CPW特徵阻抗值分析………………………………………………………..49 4.2.4 MBVD等效電路…………………………………………………………….50 4.3 結論……………………………………………………………………………...…52 第五章 未來展望…………………………………………………………………………54 參考文獻…………………………………………………………………………………..56

    參考文獻
    [1] Brian P. Otis, Jan M. Rabaey, “A 300um 1.9GHz COMS oscillator utilizing
    micromachined resonators,” IEEE Journal of solid-state circuits, pp.1271-1274,
    vol.38, No.7, July 2003.
    [2] Paul Bradley, Richard Ruby, John D. Larson III, Yury Oshmyansky, Domingo
    Figueredo, “A Film Bulk Acoustic Resonator Duplexer for USPCS Handset
    Applications,” IEEE MTT-S Digest, pp.367-370, 2001.
    [3] R. C. Ruby, P. Bradley, Y. Oshmyansky, “Thin film bulk acoustic resonators for
    wireless applications,” IEEE Ultrason. Symp, pp.813-821, 2001.
    [4] Dong-Hyun Kim, Munhyuk Yim, Dongkyu Chai, Giwan Yoon, “Improvements
    of resonance characteristics due to thermal annealing of Bragg reflectors in
    ZnO-based FBAR devices,” Electronics Letters, vol.39, No.13, June, 2003.
    [5] T. Nishihara, T. Yokoyama, T. Miyashita, Y. Satoh, “High Performance and
    Miniature Thin Film Bulk Acoustic Wave Filters for 5GHz,” IEEE Ultrasonics
    Symposium, pp.969-972, 2002.
    [6] K. M. Lakin, G. R. Kline, and K. T. McCarron, “High-Q microwave acoustic
    resonators and filters, ” IEEE Trans. Microwave Theory Tech., vol. 41, pp.
    2139-2146, Dec. 1993.
    [7] PARK, S.H., et al., “Film bulk acoustic resonator fabrication for radio frequency
    filter applications,” Jpn. J. Appl. Phys., 39, pp.4115-4119, 2000.
    [8] Ruby, R., et al., “PCS1900MHz duplexer using thin film bulk acoustic
    resonators” Electron. Lett., 35, pp.794-795,1999.
    [9] J. Larson, “Power Handling and Temperature Coefficient Studies in FBAR
    Duplexers for the 1900MHz PCS Band,” IEEE Ultrasonics Symposium,
    pp.869-874, 2000.
    [10] L. Elbrecht, R. Aigner, C.I. Lin, H.J. Timme, “Integration of Bulk Acoustic
    Wave Filters:Concepts and trends,” IEEE MTT-S Digest, pp.395-398, 2004.
    [11] Kok-Wan TAY, “Performance Characterization of thin AlN films deposited on Mo
    Electrode for Thin-Film Bulk Acoustic-Wave Resonators,” Japanese Journal of Applied Physics, vol. 43, No.8A, pp.5510-5515, 2004.
    [12] Kok-Wan Tay, “Influence of Piezoelectric Film and Electrode Materials on Film Bulk Acoustic-Wave Resonator Characteristics,” Japanese Journal of Applied Physics, Vol. 43, No.3, pp.1120-1126, 2004.
    [13] Kok-Wan Tay, “The Analysis and Design of Film Bulk Acoustic-Wave Resonators,” Ph.D. Dissertation, National Cheng Kung University, Taiwan, pp.3-28, 2004.
    [14] Motoaki Hara, Jan Kuypers, Masayoshi Esashi, “Surface micromachined AlN
    thin film 2GHz resonator for CMOS integration,” Sensors and Actuators, A117,
    pp.211-216, 2005.
    [15] J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices,” Artech House
    Inc, London England, pp.3-452, 1998.
    [16] G. H. Kim, M. J. Keum, H. I. Seo, D. S. Park, J. B. Lee, K. H. Kim,
    “Crystallographic characteristics and effective electromechanical coupling
    coefficients of AlN thin films for FBAR applications,” IEEE Ultrasonics
    Symposium, pp.2020-2023, 2003.
    [17] J.A. Ruffner, P. G. Clem, B. A. Tuttle, D. Dimos, D. M. Gonzales, “Effect of
    substrate composition on the piezoelectric response of reactively sputter AlN
    thin films,” Thin Solid Films, 354, pp.256, 1999.
    [18] C. L. Aardahl, J. W. Rogers Jr., H. K. Yun, Y. Ono, D. J. Tweet, S. T. Hsu,
    “Electrical properties of AlN thin films deposited at low temperature on
    Si(100),” Thin Solid Films, 346 , pp. 174-180, 1999.
    [19] 施敏,“SEMICONDUCTOR DEVICES Physics and Technology,” 國立交
    通大學出版社, pp.586-589, 2001.
    [20] HONG XIAO, “ INTRODUCTION TO SEMICONDUCTOR
    MANUFACTURING TECHNOLOGY,” Pearson Education, pp.458-477, 2001.
    [21] RAINEE N. SIMONS,” COPLANAR WAVEGUIDE CIRCUITS,
    COMPONENTS, AND SYSTEMS,” WILEY INTERSCIENCE, pp.1-57, 2001.
    [22] R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner,
    “Advancement of MEMS into RF-Filter Applications,” IEEE IEDM,
    pp.897-900, 2000.
    [23] Robert B. Stokes, Jay D. Crawford, “X-Band Thin Film Acoustic Filters on
    GaAs,” IEEE TRANSCATIONS ON MICROWAVE THEORY AND
    THCHNIQUES, Vol 41, June ,1993.
    [24] I. D. Robertson, S. Lucyszyn, “RFIC and MMIC design and technology,” IEE
    circuits,devices and system series 13, 1998.
    [25] Jin Bock Lee, Jun Phil Jung, Myung Ho Lee, Jin Seok Park, “Effects of bottom
    electrodes on the orientation of AlN films and the frequency responses of
    resonators in AlN based FBARs,” Thin Solid Films, pp.610-614, 2004.
    [26] R. B. Stokes, J. D. Crawford et al, “X-Band Thin Film Acoustic Filters on
    GaAs,” International Microwave Symposium Digest, pp.157-160 , 1992.
    [27] Morito Akiyama, Keigo Nagao, Naohiro Ueno, Hiroshi Tateyama, “Influence
    of metal electrodes on crystal orientation of aluminum nitride thin films,”
    Journal of Vacuum Science and Technology, vol.74, pp.699-703, 2004.
    [28] S. Yoshida, “Reactive MBE of AlN,”Journal of Vacuum Science and
    Technology, vol.16, pp.990-993, 1979.
    [29] C.C. Cheng, Y. C. Chen, H. J. Wang, W. R. Chen, “Low temperature Growth of Aluminum Nitride Thin Films on Silicon by Reactive Radio Frequency
    Magnetron Sputtering,”Journal of Vacuum Science and Technology, vol.14,
    pp.2238-2242, 1996.
    [30] M. B. Assouar, O. Elmazria, L. L. Brizoual, P. alnot, “Reactive DC Magnetron
    Sputtering of Aluminum Nitride Films for Surface Acoustic Wave Devices,”
    Diamond and Related Materials, vol.11, pp.413-417, 2002.
    [31] F. Brunet, F. Randriamora, A. Deneuvile, P. Germi, B. Anterion, M. Pernet,
    “Highly Textured Hexagonal AlN Films Deposited at Temperature by Reactive
    Cathodic Sputtering,” Materials Science and Engineering B, vol.59, pp.88-93,
    1999.
    [32] F. Engelmark, G. Fuentes, I. V. Katardjiev, A. Harsta, U. Smith, S. Berg,
    “Synthesis of Highly Oriented Piezoelectric AlN Films by Reactive Sputter
    Deposition,” Journal of Vacuum Science and Technology, vol.18,
    pp.1609-1612, 2000.
    [33] H. Maiwa, K. Okazaki, “Preparation of AlN Thin Films by Reactive Sputtering
    and Optical Emission Spectroscopy During Sputtering,” Ferroelectrics, vol.131,
    pp.83-89, 1992.
    [34] A. J. Noreika, M. H. Francombe, S. A. Zeitman, “Dielectric Properties of
    Reactively Sputtered Films of Aluminum Nitride,” Journal of Vacuum Science
    and Technology, vol.6, pp.194-197, 1969.
    [35] C. M. Yang, K. Uehara, S. K. Kim, S. Kameda, H. Nakase, K. Tsubouchi,
    “Higyly C-Axis-Oriented AlN Film Using MOCVD for 5GHz Band FBAR
    Filter,” IEEE Ultrasonics symposium, pp.170-173, 2003.
    [36] J. Zelenka, “Piezoelectric Resonator and Their Applications,” Elsevier Science
    Publishing Co. Inc., pp.64-85, 1986.
    [37] Qing Xin Su, Paul Kirby, Eiju Komuro, Massaaki Imura, Qi Zhang, Roger Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films,” IEEE Transactions on microwave theory and techniques, vol.49, No.4, pp.769-778 , April 2001.
    [38] Tapani Makkonen, Antti Holappa, Juha Ella, Martti M. Salomaa, “Finite Element Simulations of Thin-Film Composite BAW Resonators,” IEEE Transactions on ultrasonics, Ferroelectrics, and frequency control, vol. 48, No.5, pp.1241-1256, September 2001.
    [39] C. Zinck, E. Defay, A. Volatier, Gregory caruyer, D.P. Tanon, L. Figuiere, “Design, Intetration and characterization of PZT tunable FBAR,” IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp. 29-32, 2004.
    [40] P.T. Tikka, J. Kaitila, J. Ella, T. Makkonen, J. V. Knuuttila, J. Westerholm and M.M. Salomaa, “Laser Probing and FEM Modeling of Solidly Mounted Resonators,” IEEE MTT-S Digest, pp.1373-1376, 1999.
    [41] K.M. Lakin, J.S. Wang, “Acoustic bulk wave composite resonators,” Appl. Phys. Lett., Vol.38, February, 1981.
    [42] Troels Emil Kolding, “General accuracy considerations of Microwave on-wafer
    silicon device measurements,” IEEE MTT-S Digest, pp.1839-1842, 2000.
    [43] Troels Emil Kolding, “Impact of Test-Fixture Forward Coupling on On-Wafer
    Silicon Device Measurements,” IEEE Transactions on microwave and guided
    wave letters, vol. 10, NO.2, FEBRUARY, 2000.
    [44] T. Yokoyama, T. Nishihara, S. Taniguchi, M. Iwaki, Y. Satoh, “New Electrode
    Material for Low-loss and High-Q FBAR Filters,” IEEE International
    Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary
    Conference, pp.429-432, 2004.
    [45] Hao Zhang, Mong S. Marma, Eun Sok Kim, Charles E. McKenna, Mark E.
    Thompson, “Implantable Resonant Mass Sensor For Biochemical Sensing,”
    IEEE International Conference on Micro Electro Mechanical Systems 17th,
    pp.347-350, 2004.
    [46] Yoshiki Makishima, Ken-ya Hashimoto, Masatsune Yamaguchi, “Thin-Film
    Bulk Acoustic Tesonators Empolying ZnO/Pyrex-Glass Composite Diaphragm
    Structure,” Jpn. J. Appl. Phys. Vol.33, pp.2998-3000, 1994.
    [47] R. Lanz, P. Muralt, “8GHz Microwave Filters Based on Bulk Acoustic Waves in Piezoelectric AlN Thin Films,” Applications of Ferroelectrics, Proceedings of the 13th IEEE International Symposium, pp.137-140, June, 2002.
    [48] Yu-Ri Kang, Sung-Chul Kang, Kyeong-Kap Paek, Yong-Kook Kim, Soo-Won Kim, Byeong-Kwon Ju, “Air-gap type film bulk acoustic resonator using flexible thin substrate,” Sensors and Actuators, A 117, pp.62-70, 2005.
    [49] Cheng-Liang Huang, Kok-Wan Tay, Long Wu, “Fabrication and performance analysis of film bulk acoustic wave resonators,” Materials Letters, vol.59,
    pp.1012-1016, 2005.
    [50] Hasnain Lakdawala, Eun Sok Kim, Kazutoshi Najita, Michael Delisio, “Design and Fabrication of Tunable Thickness Excitation Film Bulk Acoustic Resonators and Stacked Crystal Filters for High Frequency Communication Systems,” Department of Electrical Engineering University of Hawaii, pp.28-30, August, 1997.
    [51] K. M. Lakin, “Thin Film Resonators and Filters,” IEEE Ultrasonics symposium, pp.895-906, 1999.
    [52] R. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, “Thin Film Bulk Acoustic Resonators(FBAR) for wireless Applications,” IEEE Ultrasonics Symposium, pp.813-821, 2001.
    [53] John D. Larson III, SM, Paul D. Bradley, Sm, Scott Wartenberg, Richard C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System,” IEEE Ultrasonics symposium, pp.863-868, 2000.
    [54] Jong-Soo Kim, Kun-Wook Kim, Myeong-Gweon Gu, Jong-Gwan Yook, Han-Kyu Park, “Performance of Polygonal-Shaped TFBARs and On-Wafer Tuning,” IEEE MTT-S Digest, pp.1759-1762, 2003.
    [55] www.agilent.com/view/rf
    [56] B. D. Cullity, “Elements of X-Ray Deffraction,” ADDISON-WESLEY PUBLISHING COMPANY, INC, pp.335-336, 1977.
    [57] Wei Pang, Hongyu Yu, Hao Zhang, Eun Sok Kim, “Temperature-Compensated Film Bulk Acoustic Resonator Above 2 GHz,” IEEE Electron Device Letters, vol.26, No.6, 2005.
    [58] Scitt A. Wartenberg, “RF Measurements of Die and Packages,” Artech House,
    pp.15-50, 2002.
    [59] 吳朗,“電子陶瓷-壓電”,全欣圖書公司,83年

    下載圖示 校內:2006-06-29公開
    校外:2006-06-29公開
    QR CODE