| 研究生: |
陳展慶 Chen, Chan-Ching |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備非當量鈮酸鈉鉀與鋰摻雜之壓電薄膜及其特性探討 The Effects of Non-Stoichiometry and Lithium Doping on the Performances of (Na0.5K0.5)NbO3 –Based Piezoelectric Thin Films Derived via Sol-Gel Methods |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 溶膠凝膠法 、鈮酸鈉鉀 、鋰摻雜 、非當量 、壓電薄膜 |
| 外文關鍵詞: | Sol-gel, NKN, Lithium-doped, Non-stoichiometric, Piezoelectric thin film |
| 相關次數: | 點閱:115 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用溶膠凝膠法在Pt(111)/TiO2/SiO2/Si(100)基板上製作無鉛非當量的(Na0.5K0.5)NbO3 (NKN)薄膜,藉由XRD、SEM、AFM、J-V、XPS、P-E、d33等儀器去探討其微結構與電特性的影響。在本研究中發現,NKN薄膜在高溫退火的過程中會使鈉、鉀離子揮發,並導致二次相與氧空缺的產生;這些二次相與氧空缺會使得晶格結構的改變以及電特性的下降。因此,適當的補償鈉、鉀進入薄膜裡有助於改善其電性;此外,本論文還探討了電荷在薄膜裡傳導的機制,此增加了發展成元件的可能性。最後,我們找出最佳鈉、鉀補償的參數,成功的製備出NKN薄膜。
本論文另一個重點為利用過量添加鈉、鉀的最佳參數去摻雜鋰元素進去NKN形成Lix(Na0.5 K0.5)(1-x)NbO3的結構,並探討不同比例的鋰摻雜對微結構與電特性的影響,最後發現適當的鋰摻雜有助於提升殘餘極化量與壓電係數。
In this study, lead-free non-stoichiometric piezoelectric (Na0.5K0.5)NbO3 (NKN) films were fabricated by sol-gel processing on Pt (111)/Ti/SiO2/Si(100) substrates. To investigate the microstructure and electrical properties of films, a serious of measurements such as XRD, SEM, AFM, J-V, XPS, P-E, d33, etc were carried out. It was found that the secondary phases and oxygen vacancies formed when sodium and potassium volatilized via annealing process. Then these secondary phases resulted in poor electrical properties. Therefore, the compensation of sodium and potassium appropriately is necessary. Besides, we tried to clarify the mechanism of current conduction more clearly. At last, the optimum excess mount of sodium and potassium on NKN film were found from this study. In addition to non-stoichiometric NKN film, lithium dopants are doped in our system to form Lix(Na0.5 K0.5)(1-x) NbO3 structure. The effects of lithium doping on the microstructures and electrical properties of the samples were investigated. Finally, we found the remnant polarization and piezoelectric coefficient were Improved effectively through doping lithium appropriately.
[1] C.-C. Tsai, T.-K. Chiang, and S.-Y. Chu, "The improvement of dynamic characteristics of ultrasonic therapeutic transducers using fine-grain PZT-based piezoceramics," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 56, pp. 156-166, 2009.
[2] A. Mansingh, R. Nayak, V. Gupta, and K. Sreenivas, "Surface acoustic wave propagation in PZT/YBCO/SrTiO3 and PbTiO3/YBCO/SrTiO3 epitaxial heterostructures," Ferroelectrics, vol. 224, pp. 275-282, 1999.
[3] P. Rakbamrung, M. Lallart, D. Guyomar, N. Muensit, C. Thanachayanont, C. Lucat, et al., "Performance comparison of PZT and PMN–PT piezoceramics for vibration energy harvesting using standard or nonlinear approach," Sensors and Actuators A: Physical, vol. 163, pp. 493-500, 2010.
[4] H. Ouchi, K. Nagano, and S. Hayakawa, "Piezoelectric Properties of Pb (Mg1/3Nb2/3) O3—PbTiO3—PbZrO3 Solid Solution Ceramics," Journal of the American Ceramic Society, vol. 48, pp. 630-635, 1965.
[5] S. Roberts, "Dielectric and piezoelectric properties of barium titanate," Physical Review, vol. 71, p. 890, 1947.
[6] Y. SUN, M. ZHAO, C. WANG, C. YIN, X. QI, L. REN, et al., "Effects of Ti Deficiency on Properties of Na0. 5Bi4. 5Ti4-xO15 Ceramics," Journal of The Chinese Ceramic Society, vol. 39, pp. 1462-1467, 2011.
[7] K. Singh, V. Lingwal, S. Bhatt, N. Panwar, and B. Semwal, "Dielectric properties of potassium sodium niobate mixed system," Materials research bulletin, vol. 36, pp. 2365-2374, 2001.
[8] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, et al., "Lead-free piezoceramics," Nature, vol. 432, pp. 84-87, 2004.
[9] S.-Y. Chu, W. Water, Y.-D. Juang, and J.-T. Liaw, "Properties of (Na, K) NbO3 and (Li, Na, K) NbO3 Ceramic Mixed Systems," Ferroelectrics, vol. 287, pp. 23-33, 2003.
[10] S. Kimura, S. Tomioka, S. Iizumi, K. Tsujimoto, T. Sugou, and Y. Nishioka, "Improved performances of acoustic energy harvester fabricated using sol/gel lead zirconate titanate thin film," Japanese Journal of Applied Physics, vol. 50, 2011.
[11] H. Liu, C. Quan, C. J. Tay, T. Kobayashi, and C. Lee, "A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations," Physics Procedia, vol. 19, pp. 129-133, 2011.
[12] M. Lukacs, M. Sayer, and S. Foster, "Single element high frequency (< 50 MHz) PZT sol gel composite ultrasound transducers," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 47, pp. 148-159, 2000.
[13] P. Kirby, Q. Su, E. Komuro, Q. Zhang, M. Imura, and R. Whatmore, "PZT thin film bulk acoustic wave resonators and filters," in 2001 IEEE international frequency control symposium and PDA exhibition, 2001.
[14] H. J. Lee, C. W. Ahn, S. H. Kang, I. W. Kim, J. S. Lee, and B. M. Jin, "The ferroelectric properties of (Na0.5K0.5)NbO3 thin films fabricated by rf-magnetron sputtering," Ferroelectrics, vol. 335, pp. 227-232, 2006.
[15] S. Yamazoe, Y. Miyoshi, K. Komaki, H. Adachi, and T. Wada, "Ferroelectric Properties of (Na0.5K0.5)NbO3-Based Thin Films Deposited on Pt/(001) MgO Substrate by Pulsed Laser Deposition with NaNbO3 Buffer Layer," Japanese Journal of Applied Physics, vol. 48, p. 0913, 2009.
[16] C.-R. Cho and B.-M. Moon, "(Na, K) NbO3 Thin Films Using Metal-Organic Chemical Vapor Deposition," Integrated Ferroelectrics, vol. 45, pp. 39-48, 2002.
[17] 吳朗, '電子陶瓷-壓電,' 全欣科技圖書, vol. 7, 1994.
[18] 朱建國, 孫小松, 李衛, "電子與光電子材料," 北京國防工業出版社, pp. 48, 2007.
[19] 化學之旅工作室, "快樂化學," 安徽省淮南市快樂化學網, 石英, 2009.
[20] B. Jaffe, "Piezoelectric ceramics," Academic Press London, vol. 115, 1971.
[21] C. Kittel and P. McEuen, Introduction to solid state physics vol. 8: Wiley New York, 1986.
[22] 邱碧秀, "電子陶瓷材料," 徐氏基金會, 1992.
[23] Pieter Kuiper, " Dielectric responses ," en.wikipedia, 2010.
[24] 吳朗, '電子陶瓷-介電,' 全欣科技圖書, vol. 1, 1994.
[25] 翁逸鵬, "鈮酸鈉鉀壓電陶瓷之製作及其在表面聲波濾波器的應用," 國立成功大學電機工程研究所碩士論文, 2005.
[26] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley & Sons, 2006.
[27] 林玫均, "以溶膠凝膠法製備AZO透明導電薄膜及其在薄膜電晶體上之應用," 國立台南大學材料學系碩士論文, 2012.
[28] http://www.centexbel.be/solgel-treatment.
[29] D. Bornside, C. Macosko, and L. Scriven, "Spin coating: One‐dimensional model," Journal of Applied Physics, vol. 66, pp. 5185-5193, 1989.
[30] 高慶華, "鋯鈦酸鉛(Pb(ZrTi)O3,PZT)奈米管鐵電極化特性研究," 國立成功大學物理研究所碩士論文, 2008.
[31] 江振煜, "利用溶膠凝膠法在熔融石英玻璃基板上製作摻鍺的光學波導," 國立清華大學電機研究所碩士論文, 2004.
[32] 光華, 鄧金祥, "奈米薄膜技術與應用," 五南圖書出版股份有限公司, 2005.
[33] 劉桂珍, 周小榮, 何永, 週建, "PLD技術在功能薄膜材料研究中的應用," 中國水運, 2007.
[34] 田春林, "光學薄膜應力與熱膨脹係數量測之研究," 國立中央大學光電科學研究所碩士論文, 2000.
[35] H. Al-Shareef, K. Gifford, S. Rou, P. Hren, O. Auciello, and A. I. Kingon, "Electrodes for ferroelectric thin films," Integrated Ferroelectrics, vol. 3, pp. 321-332, 1993.
[36] P. C. Goh, K. Yao, and Z. Chen, "Titanium diffusion into (K0. 5Na0. 5) NbO3 thin films deposited on Pt/Ti/SiO2/Si substrates and corresponding effects," Journal of the American Ceramic Society, vol. 92, pp. 1322-1327, 2009.
[37] 李傳山, 沈建興, 張雷, 董金美, "PZT壓電厚膜的研究現狀與進展," 矽酸鹽通報, vol. 25, pp. 103-107, 2006.
[38] C. Kang, J.-H. Park, D. Shen, H. Ahn, M. Park, and D.-J. Kim, "Growth and characterization of (K0.5Na0.5)NbO3 thin films by a sol–gel method," Journal of sol-gel science and technology, vol. 58, pp. 85-90, 2011.
[39] Q. Yu, J. F. Li, Y. Chen, L. Q. Cheng, W. Sun, Z. Zhou, et al., "Effect of Pyrolysis Temperature on Sol–Gel Synthesis of Lead‐free Piezoelectric (K, Na)NbO3 Films on Nb:SrTiO3 Substrates," Journal of the American Ceramic Society, vol. 97, pp. 107-113, 2014.
[40] X. Yan, W. Ren, X. Wu, P. Shi, and X. Yao, "Lead-free (K, Na) NbO ferroelectric thin films: Preparation, structure and electrical properties," Journal of Alloys and Compounds, vol. 508, pp. 129-132, 2010.
[41] B. Ma, G. Goh, and J. Ma, "Crystallinity and photocatalytic activity of liquid phase deposited TiO2 films," Journal of electroceramics, vol. 16, pp. 441-445, 2006.
[42] G. K. Goh, X. Han, C. P. Liew, and C. S. Tay, "Crystallinity and orientation of solution deposited anatase TiO2 films," Journal of The Electrochemical Society, vol. 152, pp. C532-C536, 2005.
[43] K. Ishikawa, N. Okada, K. Takada, T. Nomura, and M. Hagino, "Crystallization and Growth Process of Lead Titanate Fine Particles from Alkoxide-Prepared Powders," Japanese Journal of Applied Physics, vol. 33, p. 3495, 1994.
[44] G. Shirane, R. Newnham, and R. Pepinsky, "Dielectric Properties and Phase Transitions of NaNbO3 and (Na,K)NbO3," Physical Review, vol. 96, pp. 581-588, 1954.
[45] I. Souza, A. Simoes, S. Cava, L. Cavalcante, M. Cilense, E. Longo, et al., "Ferroelectric and dielectric properties of Ba0. 5Sr0. 5 (Ti0.8Sn0.2)O3 thin films grown by the soft chemical method," Journal of Solid State Chemistry, vol. 179, pp. 2972-2976, 2006.
[46] J. G. Simmons, "Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems," Physical Review, vol. 155, p. 657, 1967.
[47] M. Blomqvist, S. Khartsev, A. Grishin, A. Petraru, and C. Buchal, "Optical waveguiding in magnetron-sputtered Na0.5K0.5NbO3 thin films on sapphire substrates," Applied physics letters, vol. 82, pp. 439-441, 2003.
[48] D. Lin, K. Kwok, and H. Chan, "Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1−xLix(Nb1−yTay)O3 lead-free piezoelectric ceramics," Journal of Applied Physics, vol. 102, p. 034102, 2007.
[49] Y. Kizaki, Y. Noguchi, and M. Miyayama, "Defect control for low leakage current in K 0.5Na 0.5NbO3 single crystals," Applied physics letters, vol. 89, pp. 142910-142910-3, 2006.
[50] 陳品任, "利用原子力顯微術研究PZT薄膜之微觀鐵電特性," 國立清華大學材料科學工程學系碩士論文, 2001.
[51] K. Tanaka, K.-I. Kakimoto, H. Ohsato, and T. Iijima, "Composition Dependence of Crystallinity for Lead-Free (Li, Na, K) NbO3 Powder and Thin Films Fabricated by Sol-Gel Process," Ferroelectrics, vol. 358, pp. 175-180, 2007.
[52] H. Du, F. Tang, D. Liu, D. Zhu, W. Zhou, and S. Qu, "The microstructure and ferroelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics," Materials Science and Engineering: B, vol. 136, pp. 165-169, 1/25/ 2007.
[53] Y.-H. Joo, J.-C. Woo, and C.-I. Kim, "Etching properties of Na0.5K0.5NbO3 thin films by using inductively coupled CF4/Ar plasma," Microelectronic Engineering, vol. 114, pp. 1-6, 2014.
[54] X. Sun, J. Deng, J. Chen, C. Sun, and X. Xing, "Effects of Li substitution on the structure and ferroelectricity of (Na, K) NbO3," Journal of the American Ceramic Society, vol. 92, pp. 3033-3036, 2009.