簡易檢索 / 詳目顯示

研究生: 陳福星
Chen, Fu-Hsing
論文名稱: 使用非晶相銦鎵鋅氧化物薄膜電晶體之新式顯示器電路設計
Design of Novel Circuits for Displays Based on a-IGZO TFTs
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 44
中文關鍵詞: 非晶相銦鎵鋅氧化物薄膜電晶體閘極驅動電路畫素電路有機發光二極體藍相液晶
外文關鍵詞: Amorphous indium-gallium-zinc oxide thin-film transistor, gate driver circuit, pixel circuit, organic light-emitting diode, blue-phase liquid crystal
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,非晶相銦鎵鋅氧化物薄膜電晶體由於其相較於低溫多晶矽薄膜電晶體在大尺寸基板有較好的一致性、較低的製造成本及較小的漏電流等優點而受到相當大的注目,且相較於非晶矽薄膜電晶體也有更高的載子移動率、較高的穩定性及對可見光較高的穿透度。然而非晶相銦鎵鋅氧化物薄膜電晶體在偏壓的情況下造成臨界電壓漂移進而影響電路使用壽命,因此必須在設計閘極驅動電路及畫素電路時被考慮。
    針對上述之問題,本論文提出了三個新式使用非晶相銦鎵鋅氧化物薄膜電晶體設計的電路,並經由模擬軟體證明所提出電路之可行性。第一個電路為適用於高解析度及窄邊框液晶顯示器之閘極驅動電路,由四顆薄膜電晶體與兩顆電容所組成,特色為利用三組重疊的時脈訊號抑制電晶體臨界電壓之變異性,且輸入及驅動薄膜電晶體都可用來作為充電及放電路徑進而減少電路中的元件數,並藉由時脈訊號的重疊區間操作輸入薄膜電晶體以加強輸出波形的穩定性。因此,電路架構被簡化且單級佈局面積為400 μm × 126 μm。第二個電路為適用於大尺寸及高解析度之三維主動式有機發光二極體顯示器畫素電路,由三顆薄膜電晶體、一顆電容所組成。此電路利用同步式發光驅動法並可補償增強型及空乏型非晶相銦鎵鋅氧化物薄膜電晶體的臨界電壓漂移。根據模擬結果,當驅動薄膜電晶體的臨界電壓變異±1 V時,此電路的畫素電流相對誤差率在所有資料電壓範圍之內皆在4.46 %以下。第三個電路為適用於高解析度及高圖框頻率之藍相液晶顯示器畫素電路,由五顆薄膜電晶體、二顆儲存電容與一顆藍相液晶的等效電容所組成。藍相液晶的跨壓在其遭受頻率效應影響時仍可利用兩顆驅動薄膜電晶體維持在預期之電壓範圍,且施加其中一顆驅動薄膜電晶體閘極-源極反相偏壓以抑制臨界電壓的變異進而延長電路的使用壽命。模擬結果顯示,此電路在藍相液晶正極性及負極性時皆可正常操作。

    In recent years, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) have gained considerable attention because they have better large-area uniformity, lower manufacturing cost and lower leakage currents than low-temperature polysilicon (LTPS) TFTs. Also, a-IGZO TFTs have higher mobility, better electrical stability and better transparency to visible light than do hydrogenated amorphous silicon (a-Si:H) TFTs. However, the threshold voltage shifts under gate voltage stress must be considered in design of gate driver circuits for active-matrix liquid crystal displays (AMLCDs) and pixel circuits for active-matrix organic light-emitting diode (AMOLED) and blue-phase (BP) LCDs, because they affect the lifetime of those circuits.
    This thesis proposes three circuits that are based on a-IGZO TFTs, whose feasibility is verified by HSPICE simulations. The first circuit is a gate driver that comprises four TFTs and two capacitors and is suitable for high-resolution and narrow-bezel TFT-LCD applications. Three-phase overlapping clock signals with a 40% duty cycle are used to suppress the threshold voltage shifts of the a-IGZO TFTs. Furthermore, both the input TFT and the driving TFT provide paths for charging and discharging, reducing the number of components of the gate driver. Also, the input TFT can be made to enhance the stability of the output waveform by using an appropriate period of overlap of the clock signals. Consequently, the structure of the circuit is simplified and the resulting single-stage layout area is 400 μm × 126 μm. The second circuit is a pixel circuit that is composed of three TFTs and one capacitor and is for use in large-size and high-resolution three-dimensional (3D) AMOLED displays. The simultaneous emission (SE) driving scheme is utilized to provide enough time for shutter glasses to switch and reduces left-right crosstalk. The proposed pixel circuit for detecting the threshold voltage of the driving TFT is a source-follower structure to compensate for the threshold voltage shifts in both normally-off and normally-on a-IGZO TFTs. According to the simulation results obtained with ±1 V threshold voltage shifts of the driving TFT, the relative error rates of the OLED currents are less than 4.46% for the entire range of possible data voltages. The third circuit is a pixel circuit which consists five TFTs, two storage capacitors and one equivalent capacitor of the BPLC for high-resolution and high-frame-rate BP-LCDs. The voltage across the BPLC can be maintained by two driving TFTs when the BPLC suffers from the frequency effect. Moreover, the gate-source voltage in one of the driving TFTs is smaller than zero to ameliorate the threshold shifts of the a-IGZO TFTs and extend the lifetime of the proposed BPLC pixel circuit. Simulation results indicate that this circuit can operate with both positive polarity and negative polarity of the BPLC.

    Chinese Abstract i English Abstract iii Acknowledgements v Contents vi Table Captions viii Figure Captions ix Chapter 1 Introduction 1.1 Background 1 1.2 Motivation and Previous Researches 4 1.3 Thesis Organization 7 Chapter 2 Simplified Gate Driver Circuit for High-Resolution and Narrow-Bezel Thin-Film Transistor Liquid Crystal Display Applications 2.1 Previous Gate Driver Circuits on Glass 8 2.2 Circuit Schematic and Operation 10 2.3 Results and Discussions 11 2.4 Summary 12 Chapter 3 New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in 3D AMOLED Displays 3.1 Previous AMOLED Pixel Circuits 18 3.2 Circuit Schematic and Operation 19 3.3 Results and Discussions 21 3.4 Summary 22 Chapter 4 Long Lifetime Pixel Circuit for High-Resolution and High-Frame-Rate Blue-Phase Liquid Crystal Displays 4.1 Issues of the Previous Works 27 4.2 Circuit Schematic and Operation 28 4.3 Results and Discussions 30 4.4 Summary 31 Chapter 5 Conclusions and Future Works 5.1 Conclusions 35 5.2 Future Works 36 References 37 Publication List 43

    [1] H. Kristiansen and J. Liu, “Overview of conductive adhesive interconnection technologies for LCDs,” IEEE Trans. Compon., Packag., Manuf. Technol. A, vol. 21, no. 2, pp. 208–214, Jan. 1998.
    [2] U. B. Kang and Y. H. Kim, “A new COG technique using low temperature solder bumps for LCD driver IC packaging applications,” IEEE Trans. Compon. Packag. Technol., vol. 27, no. 2, pp. 253–258, Jan. 2004.
    [3] Y. H. Tai, “Design and operation of TFT-LCD panels,” Wunan, 2006.
    [4] R. Joshi, “Chip on glass-interconnect for row/column driver packaging,” Microelectr. J., vol. 29, pp. 343–349, Jun. 1998.
    [5] J. Liu, “ACA bonding technology for low cost electronics packaging applications current status and remaining challenges,” in Proc. 4th Int.Conf. Adhesive Joining and Coating Technology Electronic Manufacturing, pp. 1–15, 2000.
    [6] C. T. Liu, “Revolution of the TFT LCD technology,” J. Display Technol., vol.3, no.4, pp. 342–350, Dec. 2007.
    [7] J. C. Hwang, “Advanced low-cost bare-DIE packaging technology for liquid crystal displays,” IEEE Trans. Compon., Packag., Manuf. Technol. A, vol. 18, no. 3, pp. 458–461, Mar. 1995.
    [8] C. Hordequin, J. M. Bayot, T. Kretz, S. Yon, S. Arfuso, N.Szydlo, and H. Lebrun, “A 1” VGA LC light valve using a-Si:H TFTs with integrated drivers”, EuroDisplay 02, pp. 387–390, 2002.
    [9] S. H. Lo, C. C. Wei, W. C. Lin, I. Wang, C. C. Shih, and Y. E. Wu, “Integrated gate driver circuit with one conduction path for charge-discharge,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 37, no. 1, pp. 231–234, Jun. 2006.
    [10] S. H. Moon, Y. S. Lee, M. C. Lee, B. H. Berkeley, N. D. Kim, and S. S. Kim, “Integrated a-Si:H TFT gate driver circuits on large area TFT-LCDs,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 38, no. 1, pp. 1478–1481, May 2007.
    [11] K. Leo, “Organic LEDs look forward to a bright, white future,” Science, vol. 310, pp. 1762–1763, Dec. 2005.
    [12] Y. Sun, N. Giebink, H. Kanno, B. Wa, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature, vol. 440, pp. 908–912, Apr. 2006.
    [13] H. Kanno, Y. Sun, and S. R. Forrest, “White organic light-emitting device based on a compound fluorescent-phosphor-sensitized-fluorescent emission layer,” Appl. Phys. Lett., vol. 89, pp. 143516, Oct. 2006.
    [14] G. Cheng, Y. Zhang, Y. Zhao, S. Liu, and Y. Ma, “Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence,” Appl. Phys. Lett., vol. 88, pp. 083512, Feb. 2006.
    [15] H. Kanno, N. C. Giebink, Y. Sun, and S. R. Forrest, “Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters,” Appl. Phys. Lett., vol. 89, pp. 023503–1–3, Jul. 2006.
    [16] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, “White organic light-emitting devices using a phosphorescent sensitizer,” Appl. Phys. Lett., vol. 89, pp. 4224–4226, Jun. 2003.
    [17] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1166–1168, Sep. 2013.
    [18] D. Geng, D. H. Kang, M. J. Seok, M. Mativenga, and J. Jang, “High-speed and low-voltage-driven shift register with self-aligned coplanar a-IGZO TFTs”, IEEE Electron Device Lett., vol. 33, no. 7, pp. 1012–1014, Jul. 2012.
    [19] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 963–965, Sep. 2010.
    [20] C. L. Lin, M. H. Cheng, C. D. Tu, and M. C. Chuang, “Highly reliable integrated gate driver circuit for large TFT-LCD applications,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 679–681, May 2012.
    [21] C. L. Lin, M. H. Cheng, C. D. Tu, C. C. Hung, and J. Y. Li, “2-D–3-D switchable gate driver circuit for TFT-LCD applications,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2098–2105, Jun. 2014.
    [22] C. L. Lin, M. H. Cheng, C. D. Tu, C. E. Wu, and F. H. Chen, “Low-power a-Si gate driver circuit with threshold-voltage-shift recovery and synchronously controlled pull-down scheme,” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 136–142, Jan. 2015.
    [23] G. T. Zheng, P. T. Liu, M. C. Wu, M. C. Yang, L. W. Chu, and C. Y. Wu, “Low power gate driver circuits for narrow bezel panel application,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 43, no. 1, pp. 1076–1078, Jun. 2012.
    [24] D. W. Park, C. K. Kang, Y. Park, B. Chung, K. H. Chung, B. H. Kim, and S. S. Kim, “High-speed AMOLED pixel circuit and driving scheme,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 41, no. 1, pp. 806–809, Jun. 2010.
    [25] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May 2012.
    [26] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS pixel circuit with AC driving method to reduce OLED degradation for 3D AMOLED displays,” J. Display Technol., vol. 8, no. 12, pp. 681–683, Dec. 2012.
    [27] T. Tanabe, S. Amano, H. Miyake, A. Suzuki, R. Komatsu, J. Koyama, S. Yamazaki, K. Okazaki, M. Katayama, H. Matsukizono, Y. Kanzaki, and T. Matsuo, “New threshold voltage compensation pixel circuit in 13.5-inch quad full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 43, no. 1, pp. 88–91, Jun. 2012.
    [28] K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Display Technol., vol. 5, no. 7, pp. 318–322, Aug. 2010.
    [29] C. L. Lin, M. H. Cheng, C. D. Tu, C. C. Hung, P. C. Lai, J. Yan, Y. Chen and S. T. Wu, “Pixel circuit with bootstrapping structure for blue-phase liquid crystal,” in Soc. Inf. Display Symp. Dig. Tech. Papers, pp. 306–309, Jun. 2013.
    [30] C. L. Lin, C. E. Wu, M. H. Cheng, B. S. Tzeng, C. H. Lin, N. Sugiura, and S. T. Wu, “New blue-phase LCD driving pixel circuit for a-IGZO TFT with large operation voltage,” in Soc. Inf. Display Symp. Dig. Tech. Papers, pp. 1157–1159, Jun. 2014.
    [31] C. D. Tu, C. L. Lin, J. Yan, Y. Chen, P. C. Lai, and S. T. Wu, “Driving scheme using bootstrapping method for blue-phase LCDs,” J. Display Technol., vol. 9, no. 1, pp. 3–6, Jan. 2013.
    [32] B. Kim, H. N. Cho, W. S. Choi, S. H. Kuk, J. S. Yoo, S. Y. Yoon, M. Jun, Y. K. Hwang, and M. K. Han, “A novel depletion-mode a-IGZO TFT shift register with a node-shared structure,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 1003–1005, Jul. 2012.
    [33] W. J. Wu, X. F. Song, L. R. Zhang, L. Zhou, M. Xu, L. Wang, and J. B. Peng, “A highly stable biside gate driver integrated by IZO TFTs,” IEEE Trans. Electron Devices, vol. 61, no. 9, pp. 3335–3338, Sep. 2014.
    [34] D. Geng, B. S. Kim, M. Mativenga, M. J. Seok, D. H. Kang, and J. Jang, “Distinguished student paper: 40 um-pitch IGZO TFT gate driver for high-resolution rollable AMOLED,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 44, no. 1, pp. 927–930, Jun. 2013.
    [35] K. Toyotaka, H. Miyake, M. Kaneyasu, A. Yamashita, M. Jikumaru, J. Koyama, and S. Yamazaki, “513-ppi liquid crystal display using c-axis aligned crystalline oxide semiconductor with narrow bezel and aperture ratio greater than 50%,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 45, no. 1, pp. 634–637, Jun. 2014.
    [36] F. Maurice, H. Lebrun, N. Szydlo, U. Rossini, and R. Chaudet, “High-resolution projection valve with amorphous silicon AMLCD technology,” in Proc. SPIE, vol. 3296, pp. 92–99, Apr. 1998.
    [37] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Yen, and S. Zhang, “Implementation of an a-Si:H TFT gate driver using a five-transistor integrated approach,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2142–2148, Aug. 2012.
    [38] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes for a-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, no. 2, pp. 267–277, Dec. 2005.
    [39] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, “Amorphous oxide TFT backplane for large size AMOLED TVs,” in Soc. Inf. Display Symp. Dig. Tech. Papers, vol. 19, no. 1, pp. 16–20, Jan. 2011.
    [40] Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol., vol. 5, no. 7, pp. 250–256, Jul. 2009.
    [41] L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Dielectric dispersion on Kerr constant of blue phase liquid crystals,” Appl. Phys. Lett., vol. 99, pp. 181126, Nov. 2011.
    [42] C. L. Lin, C. D. Tu, M. H. Cheng, C. C. Hung, C. H. Lin, and N. Sugiura, “Novel dual-coupling pixel circuit to achieve high transmittance of blue-phase liquid crystal,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 354–356, Apr. 2015.
    [43] L. Rao, H. C. Cheng, and S. T. Wu, “Low voltage blue-phase LCDs with double-penetrating fringe fields,” J. Display Technol., vol. 6, no. 8, pp. 287–289, Aug. 2010.
    [44] H. C. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C. Y. Liu, T. H. Huang, C. Y. Tsai, C. H. Lin, and S. T. Wu, “Blue-phase liquid crystal displays with vertical field switching,” J. Display Technol., vol. 8, no. 2, pp. 98–103, Feb. 2012.
    [45] Y. Lee, Y. Chen, J. Sun, S. T. Wu, S. H. Liu, P. J. Hsieh, K. L. Cheng, J. W. Shiu, S. I. Yamamoto and Y. Haseba, “Frequency effects on polymer-stabilized blue-phase liquid crystals,” in Soc. Inf. Display Symp. Dig. Tech. Papers, pp. 22–24, Jun. 2012.

    無法下載圖示 校內:2020-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE