簡易檢索 / 詳目顯示

研究生: 魏貞元
Wei, Chen-Yuan
論文名稱: 永磁同步發電機功率控制器之研製與模擬
Design and Simulation of Power Converters for Permanent-Magnet Synchronous Generators
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 單相換流器功率因數修正整流器永磁同步發電機
外文關鍵詞: power-factor-correction converter, single-phase inverter, permanent-magnet synchronous generator
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計及製作變速型永磁同步發電機之功率控制系統,該
    系統係採用交流-直流轉換器及直流-交流轉換器組成功率轉換器,可
    將永磁同步發電機輸出之變動頻率及電壓轉換為固定頻率及電壓之
    電源,以供應單相負載之用電。
    本文所提出功率轉換器分為兩級架構,分別利用IC UC3854 和十
    六位元數位信號處理器TMS320F240 來協調控制各級的功率晶體開
    關。三個單相昇壓型功因修正整流器將風力用永磁同步發電機之輸出
    交流電源轉換成穩定直流電壓,並有效改善發電端輸出端的功率因
    數。單相換流器則用來產生穩定的單相交流電源輸出。
    整個系統採用MATLAB/SIMULINK 及PSIM 軟體完成發電機功
    率轉換系統之模擬,並將模擬結果與實測結果做比較,以驗證本論文
    所提功率控制系統之可行性

    This thesis aims to design and implement a power converter
    consisting of an Ac-to-Dc converter and a Dc-to-Ac inverter for
    transforming variable-voltage variable-frequency output of the studied
    variable-speed permanent-magnet synchronous generator (PMSG) to a
    constant-voltage constant-frequency single-phase source supplying loads.
    The core controls of the proposed two power converters to switch
    power semiconductor switches are by means of an IC UC3854 and a
    digital signal processor (DSP) of TMS320F240, respectively. Three
    single-phase power-factor-correction converters are connected to the
    stator windings of the studied PMSG to control the Dc-link voltage and
    correct the output power factor of the studied generator. The single-phase
    inverter is properly switched to produce a constant-voltage
    constant-frequency source for the connected single-phase loads.
    The performance of the studied system is simulated by MATLAB
    /SIMULINK and PSIM. The simulated and experimental results are also
    compared to validate the characteristics of the proposed power converter
    for the studied PMSG.

    中文摘要 I 英文摘要 II 目錄 III 表目錄 VI 圖目錄 VII 符號表 X 第一章 緒論 1 1.1 研究背景及動機 1 1.2 系統架構 2 1.3 文獻回顧 4 1.4 內容大綱 7 第二章 永磁同步發電機之數學模型建立 9 2.1 永磁式同步發電機之數學模型 9 2.2 旋轉座標系統下之電壓及電磁轉矩方程式 13 2.3 永磁發電機之輸出電壓模擬與實測結果 14 第三章 交-直流功率轉換器之分析及控制 19 3.1 升壓式直流轉換器分析 20 3.1.1 功率因數之定義 22 3.1.2 功率因數修正器之原理 23 3.2 升壓式直流轉換器之控制器設計 27 3.2.1 UC3854 內部方塊圖及各接腳介紹 27 3.2.2 控制電路設計 29 3.3 升壓式直流轉換器模型建立與穩定度分析 39 3.4 升壓式直流轉換器穩定度分析 47 第四章 直-交流功率轉換器之分析與控制 49 4.1 單相全橋式換流器基本架構及其工作模式 49 4.1.1 雙極性電壓切換 51 4.1.2 單極性電壓切換 54 4.2 單相全橋式換流器之數學模型推導及建立 57 4.3 換流器之控制 61 第五章 實驗架構與實測結果 63 5.1 發電單元 64 5.2 整流單元 64 5.2.1 儲能電感器之設計 65 5.2.2 輸出電容器之設計 66 5.2.3 硬體電路之建立 66 5.3 換流器電路的設計 67 5.3.1 LC濾波器的設計 68 5.3.2 回授取樣及驅動電路 68 5.3.3 數位控制器 69 5.4 動態分析 74 5.4.1 風速變動下對系統之動態實測分析 74 5.4.2 負載變動下對系統之動態實測分析 77 5.4.3 整流器在變動電壓等級之實測效率 82 第六章 結論與未來研究方向 83 6.1 結論 83 6.2 建議與未來研究方向 84 參考文獻 85 作者簡介 89

    [1] Y. Li, D.M. Vilathgamuwa, and P.C. Loh, “Design, analysis, and real-time testing of a controller for multibus microgrid system,” IEEE Transactions on Power Electronics, vol. 19, no. 5, September 2004, pp. 1195-1204.
    [2] Z. Chen, “Compensation schemes for a SCR converter in variable speed wind power systems,” IEEE Transactions on Power Apparatus and Systems, vol. 19, no. 2, June 2004, pp. 813-821.
    [3] R. Esmaili, L. Xu, and D.K. Nichols, “A new control method of permanent magnet generator for maximum power tracking in wind turbine application,” IEEE Power Engineering Society General Meeting, vol. 3, June 2005.
    [4] R. Esmaili and L. Xu, “Sensorless control of permanent magnet generator in wind turbine application,” IEEE Transactions on Power Electronics, vol. 18, no. 3, November 2006, pp. 2071-2075.
    [5] S.K. Salman and A.L.J. Teo, “Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator,” IEEE Transactions on Power Apparatus and Systems, vol. 18, no. 2, July 2006, pp. 793-802.
    [6] R.M. Hilloowala and A.M. Sharaf, “A utility interactive wind energy conversion scheme with an asynchronous DC link using a supplementary control loop,” IEEE Transactions on Energy Conversion, vol. 9, September 1994, pp. 558-563.
    [7] R.M. Hilloowala and A.M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme,” IEEE Transactions on Industrial Electronics, vol. 32, January 1996, pp. 57-65.
    [8] J. Qian and F.C. Lee, “Voltage-source charge-pump power- factor-correction AC/DC converters,” IEEE Transactions on Power Electronics, vol. 14, March 1999, pp. 350-358.
    [9] K. Hirachi and M. Nakaoka, “Novel PFC converter suitable for engine-driven generator-interactive three-phase power systems,” IEE Proceedings, Electric Power Applications, vol. 146, March 1999, pp. 253-260.
    [10] B.S. Lee, H. Jaehong, P.N. Enjeti, and I.J. Pitel, “A robust three-phase active power-factor-correction and harmonic reduction scheme for high power,” IEEE Transactions on Industrial Electronics, vol. 46, June 1999, pp. 483-494.
    [11] J.Y. Lee, Y.M. Chang, and F.Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Transactions on Industrial Electronics, vol. 46, August 1999, pp. 803-813.
    [12] G. Zhu, H. Wei, P. Kornetzky, and I. Batarseh, “Small-signal modeling of a single-switch AC/DC power-factor-correction circuit,” IEEE Transactions on Power Electronics, vol. 14, November 1999, pp. 1142-1148.
    [13] Y.K.E. Ho, S.Y.R. Hui, and Y.S. Lee, “Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters,” IEEE Transactions on Power Electronics, vol. 15, January 2000, pp. 62-71.
    [14] S. Mobin, E. Hiraki, H. Takano, and M. Nakaoka, “Simulation method for DSP-controlled active PFC high frequency power converters,” IEE Proceedings, Electric Power Applications, vol. 147, May 2000, pp. 159-166.
    [15] K.C. Lee, H.S. Chei, and B.H. Cho, “Power factor correction converter using delay control,” IEEE Transactions on Power Electronics, vol. 15, July 2000, pp. 626-633.
    [16] E.G. Marra and J.A. Pomilio, “Induction-generator-based system providing regulated voltage with constant frequency,” IEEE Transactions on Industrial Electronics, vol. 47, August 2000, pp. 908-914.
    [17] Y. Nishida and M. Nakaoka, “Simplified predictive instantaneous current control for single-phase and three-phase and three-phase voltage-fed PFC converters,” IEE Proceedings, Electric Power Applications, vol. 144, November 2000, pp. 46-52.
    [18] J. Espinoza, G. Joos, M. Perez, and L. Moran, “Stability issues in three-phase PWM current/voltage source rectifiers in the regeneration mode,” Proceedings of IEEE International Symposium on Industrial Electronics, vol. 2, 2000, pp. 453-458.
    [19] J. Zhou, Z. Lu, Z. Lin, Y. Ren, Z. Qian, and Y. Wang, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Transactions on Power Electronics, vol. 16, March 2001, pp. 217-222.
    [20] T. Jin, L. Li, and K. Smedley, “A universal vector controller for three-phase PFC, APF, STATCOM, and grid-connected inverter,” in Proceedings of IEEE Applied Power Electronics Conf. and Exposition, vol. 1, November 2004, pp. 594-600.
    [21] J. Zhang, F.C. Lee, and M.M. Jovanovic, “Novel sampling algorithm for DSP controlled 2 kW PFC converter,” IEEE Transactions on Power Electronics, vol. 18, January 2003, pp. 44-50.
    [22] F.R. Teodorescu and F. Blaabjerg, “Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode,” IEEE Transactions on Power Electronics, vol. 19, no. 5, September 2004, pp. 1323-1332.
    [23] G. Iwanski and W. Koczara, “Sensorless stand alone variable speed system for distributed generation,” in Proceedings Power Electronics Specialist Conf., Aachen, 2004, pp. 1915-1921.
    [24] J. Rodríguez, J. Dixon, J. Espinoza, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Transactions on Industrial Electronics, vol. 52, no. 1, February 2005, pp. 5-22.
    [25] 陳建智,三相昇壓型主動式整流器之分析L、C與參數設計,國立清華大學電機工程研究所碩士論文,民國九十年七月。
    [26] 陳和文,獨立自激式感應發電機經受控型換流器供應獨立負載之研製,國立成功大學電機工程研究所碩士論文,民國九十一年五月。
    [27] 曾祥賓,以數位信號處理器為基礎之風力發電用能量轉換系統,國立成功大學電機工程研究所碩士論文,民國九十二年六月。
    [28] 李思賢,數位式單相低功率太陽光電能轉換系統,國立中山大學電機工程研究所碩士論文,民國九十二年七月。
    [29] 呂紹豪,永磁同步電機之風力發電系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十二年六月。
    [30] 李東璟,以數位信號處理器完成風力用獨立自激式感應發電機可控整流器與切換自激電容器組之協調控制研究,國立成功大學電機工程研究所碩士論文,民國九十三年六月。
    [31] 林佑任,協調可控整流器與可控換流器於風力用發電機之控制,國立成功大學電機工程研究所碩士論文,民國九十五年六月。
    [32] 李隆財、吳金勇,TMS320C240原理與實習,長高企業有限公司,民國八十九年。
    [33] 龔應時、陳建武、徐永松,TMS320/C24x DSP控制器原理與應用,滄海書局,民國九十年。
    [34] TMS320C24x DSP Controllers CPU, System, and Instruction Set, vol. 1, Texas Instruments, 1997.
    [35] TMS320C24x DSP Controllers Peripheral Library and Specific Devices, vol. 2, Texas Instruments, 1997.
    [36] TMS320C24x DSP Controllers Evaluation Module, Texas Instruments, 1997.

    下載圖示 校內:2008-08-30公開
    校外:2010-08-30公開
    QR CODE