簡易檢索 / 詳目顯示

研究生: 任義軒
Jen, Yi-Hsuan
論文名稱: 降低節點運算之可重組低複雜度多輸入多輸出偵測器之架構設計
Design of Low-Complexity Reconfigurable MIMO Detector with Reduced Nodes Computation
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 50
中文關鍵詞: 多輸入多輸出偵測器
外文關鍵詞: MIMO Detector
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來的無線通訊系統中,資料傳輸的速率以及連線品質受到越來越高的要求,而能夠提供較佳傳輸效率與連線可靠度的多輸入多輸出(multiple-input multiple-output, MIMO)傳輸方式,也漸漸吸引許多研究開發的目光。然而要如何使用較有效率的方式實現多輸入多輸出偵測器,也成為多輸入多輸出系統開發的重要課題。
    本篇論文主要利用非排序演算法(sort-free)與提出之平均值輔助預先刪除技術(mean-aided early-pruned)實現多輸入多輸出偵測器。此偵測器能夠在保持傳統非排序演算法的效能下,進一步降低運算的節點數目。由實驗結果可以顯示出,所提出之可重組4×4多輸入多輸出偵測器在同樣系統參數下,與現有文獻相比能夠達到較好的正規化吞吐量(normalized throughput),在節點運算方面與傳統非排序演算法和K-Best演算法相比也能達到明顯的降低。

    For recent years, wireless communication networks are increasingly required to provide high data rate and high link quality. Multiple-input multiple-output (MIMO) transmission techniques which can offer high spectral efficiency and improved link reliability have become more attractive by researchers. The main challenge of the practical realization of MIMO wireless communication systems is how to implement the MIMO detector efficiently.
    This work presents a MIMO detector based on the sort-free concept and the proposed mean-aided early-pruned scheme. The derived MIMO detector can reduce the number of node computation while maintaining the bit error rate (BER) performance of the conventional sort-free MIMO detection algorithm. Experimental results shows that the proposed reconfigurable detector design with 4×4 antenna array has better normalized throughput rate compared to those of existing detectors under the same system configurations. Moreover, a significant reduction on node extensions can be achieved using the presented detection scheme compared with the conventional sort-free algorithm and the K-best algorithm.

    摘 要...............................................................................................................................i ABSTRACT.........................................................................................................................ii 誌 謝..............................................................................................................................iii 目 錄..............................................................................................................................iv 表 目 錄..............................................................................................................................vi 圖 目 錄.............................................................................................................................vii 第一章 緒論.........................................................................................................................1 1.1 研究動機................................................................................................................1 1.2 論文架構................................................................................................................2 第二章 背景知識介紹.........................................................................................................4 2.1 多輸入多輸出系統模型........................................................................................4 2.2 通道模型................................................................................................................7 2.3 傳統多輸入多輸出偵測器....................................................................................7 2.3.1 最大相似偵測器.........................................................................................7 2.3.2 線性偵測器.................................................................................................8 2.3.3 球形解碼演算法.........................................................................................8 2.3.4 K-Best演算法..............................................................................................11 2.3.5 非排序演算法............................................................................................11 第三章 適用於非排序演算法之預先刪除技術...............................................................14 3.1 非排序演算法所面臨之問題..............................................................................14 3.2 平均值輔助之預先刪除技術..............................................................................14 3.2.1 非排序偵測器之效能分析.......................................................................15 3.2.2 加入預先刪除技術之多輸入多輸出偵測器...........................................16 3.3 效能比較與複雜度分析......................................................................................19 第四章 低複雜度硬體架構之設計...................................................................................25 4.1 硬體架構..............................................................................................................25 v 4.1.1 整體架構...................................................................................................25 4.1.2 局部距離計算單元...................................................................................28 4.1.3 節點選擇單元...........................................................................................30 4.1.4 平均值輔助預先刪除單元.......................................................................32 4.1.5 輸出選擇單元...........................................................................................35 4.2 實現結果..............................................................................................................36 4.2.1 16-QAM實現結果.....................................................................................36 4.2.2 64-QAM實現結果.....................................................................................37 第五章 可重組化架構設計...............................................................................................39 5.1 整體架構與時序分析..........................................................................................39 5.2 處理單元設計......................................................................................................41 5.3 實現結果與比較..................................................................................................43 第六章 結論與未來展望...................................................................................................47 6.1 結論......................................................................................................................47 6.2 未來展望..............................................................................................................47 參考文獻.............................................................................................................................48

    [1]
    J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bölcskei, “An overview of MIMO communications – A key to gigabit wireless,” Proc. IEEE, vol. 92, no. 2, pp. 198–218, Feb. 2004.
    [2]
    S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.
    [3]
    V. Tarokh, N. Seshadri, and J. C. Belfiore,“On maximum likelihood detection and the search for the closet lattice point,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389–2402, Oct. 2003.
    [4]
    P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. URSI ISSSE 1998, pp. 295–300.
    [5]
    G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky,“Detection algorithm and initial laboratory results using V-BLAST space – time communication architecture,"Electron. Lett., vol. 35, pp. 14–16, Jan. 1999.
    [6]
    E. Viterbo and J. Boutros,“A universal lattice code decoder for fading channels,"IEEE Trans. Inform. Theory, vol. 45, pp. 1639–1642, July 1999.
    [7]
    M. O. Damen, A. Chkeif, and J.-C. Belfiore,“Lattice code decoder for space – time codes,"IEEE Commun. Lett., vol. 4, pp. 161–163, May 2000.
    [8]
    A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bölcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1566–1577, Jul. 2005.
    [9]
    C. P. Schnorr and M. Euchener, “Lattice basis reduction: Improved practical algorithms and solving subset sum problems,” Math Program., vol. 66, no. 2, pp. 181–191, Sep. 1994.
    [10]
    K. Wong, C. Tsui, R. Cheng, and W. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Proc. IEEE ISCAS, May 2002, pp. 273–276.
    [11]
    Z. Guo and P. Nilsson, “A VLSI architecture for the Schnorr-Euchner decoder for MIMO system,” in Proc. IEEE CAS Symp. Emerging Technol., Jun. 2004, pp. 65–68.
    [12]
    Jin Jie, Chi-ying Tsui and Wai-Ho Mow, “A threshold-based algorithm and VLSI architecture of a K-best lattice decoder for MIMO systems,” in Proc. IEEE ISCAS 2005, May 2005, vol. 4, pp. 3359–3362.
    [13]
    M. Wenk, M. Zellweger, A. Burg, N. Felber, and W.Fichtner, “K-best MIMO detection VLSI architectures achieving up to 424Mbps,” in Proc. IEEE ISCAS 2006, May 2006 pp. 1151–1154.
    [14]
    S. Chen , T. Zhang and Y. Xin“Relaxed K-best MIMO signal detector design and VLSI implementation,"IEEE Trans. VLSI Syst., vol. 15, pp. 328–337, Mar. 2007.
    [15]
    B. S. Kim, H. Kim, and K. Choi,“An adaptive K-best algorithm without SNR estimation for MIMO systems,” in Proc. IEEE VTC, May. 2008, pp.817–821.
    [16]
    K. E. Batcher, “Sorting networks and their applications,” in Proc. IEEE ETW, Jun. 1968, pp. 307–314.
    [17]
    R. S. Yazdi and T. Kwasniewski, “Configurable K-best MIMO detector architecture,” in Proc. 3rd ISCCSP 2008, pp. 1565–1569.
    [18]
    M. Eltawil, S. Mondal and N. Salama,“Architectural optimizations for low power K-best MIMO decoders,"IEEE Tran. Vehicular Technology, vol. 58, pp. 3145–3153, Sep. 2009.
    [19]
    S. Chen, T. Zhang, and Y. Xin, “Breadth-first tree search MIMO signal detector design and VLSI implementation,” in Proc. IEEE MILCOM 2005, Oct. 2005, vol. 3, pp. 1470–1476.
    [20]
    K. Amiri, C. Dick, R. Rao, and J. Cavallaro, “Novel sort-free detector with modified real-valued decomposition (M-RVD) ordering in MIMO systems,” in Proc. Globecom, Dec. 2008, pp. 1–5.
    [21]
    H.-L. Lin, R.-C. Chang, and H. –L. Chen, “A high-speed SDM-MIMO decoder using efficient candidate searching for wireless communication,” IEEE Trans. Circuits Syst. II, Express Brief, vol. 55, no. 3, pp. 289–293, Mar. 2008.
    [22]
    C.-J. Huang, C.-W. Yu, and H.-P. Ma, "A power-efficient configurable low-complexity
    MIMO detector," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 2, pp. 485–496, 2009.
    [23]
    T. H. Im, I. Park, J. Kim, J. Yi, J. Kim, S. Yu, and Y. S. Cho, “A new signal detection method for spatially multiplexed MIMO systems and its VLSI implementation,” IEEE Trans. Circuits Syst. II, Express Brief, vol. 56, no. 5, pp. 399–403, May. 2009.
    [24]
    C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, “A 74.8 mW soft-output detector IC for 8×8 spatial-multiplexing MIMO communications,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 411–421, Feb. 2010.
    [25]
    H. Y. Hsu, A. Y. Wu, and J. C. Yeo, “Area-Efficient VLSI design of Reed-Solomon decoder for 10GBase-LX4 optical communication systems,” IEEE Trans. Circuits Syst. II, Express Brief, vol. 53, no. 11, pp. 1245–1249, Nov. 2006.

    無法下載圖示 校內:2015-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE