簡易檢索 / 詳目顯示

研究生: 林哲立
Lin, Chen-Li
論文名稱: 植入式神經電刺激器之非接觸式射頻饋電電路研製
Design and Implementation of Contactless RF Power Transfer Circuit for Implanted Neurostimulator
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 植入式神經電刺激器耦合結構射頻電能傳輸技術
外文關鍵詞: implanted neurostimulator, coupled structure, RF power transfer
相關次數: 點閱:187下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出改良型印刷電路板感應耦合結構應用於植入式神經電刺激器中,首先將工作頻率提升為13.56MHz以縮小線圈體積同時根據操作頻率選擇合適之鐵芯來完成整體系統之研製。接著利用Maxwell磁場模擬軟體分析印刷電路板結構其磁場強度分佈,以決定線圈形狀,並根據不同內外徑之橢圓形線圈進行磁通密度模擬,並觀察其橫向位移之耦合係數變化藉此決定初、次級側線圈形式。最後量測初、次級側感應結構於不同圈數下之耦合係數變化,藉此決定線圈圈數。於初級側電路加入鎖相迴路,當負載與仿體厚度改變時,系統仍可維持在諧振頻率上,藉此達到系統最佳功率輸出。刺激策略上採用定電流刺激模式,刺激波形上選擇延緩式刺激波形,藉由以上兩者之搭配來減少對神經細胞的傷害及疲勞。當仿體厚度為2公分下,於中心位置附近電能傳輸效率維持在55.6%以上,即使達到最大錯向位移下,其電能傳輸效率仍能維持於30.5%,以確保植入式神經電刺激器之完整運作。

    The thesis proposes the improved inductive coupled PCB structure for implanted neurostimulator. The operating frequency is up to 13.56MHz in order to reduce the size of the coils, and chooses the appropriate ferrite core according to this frequency. At the first, we use Maxwell to simulate several types of coils to choose shapes of coils and observe different inner and outer diameter coils of their magnetic density. The coupling coefficient of inductive coils are measured when the coils exist misalignment in order to choose turns of coils. The circuit uses Phase-Locked Loop (PLL) to modulate the operating frequency, thus achieves resonant frequency tracking mechanism when the load changes. The strategy of stimulation is constant-current mode, and creates depletion pulse in order to reduce the damage to tissue. According to the experiment results, the power transfer efficiency is up to 55.6% when the imitation of body tissue is 2 centimeters. Besides, even coils exist maximum displacement, the power transfer efficiency maintains at 30.5%.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 非接觸式植入裝置應用 5 1-3 研究方法 8 1-4 論文大綱 10 第二章 非接觸感應耦合原理與特性 11 2-1 前言 11 2-2 非接觸式電能傳輸之工作原理 11 2-3 非理想變壓器等效模型分析 13 2-4 植入式生醫裝置感應耦合結構種類 17 2-5 感應電能傳輸頻率之選擇 19 2-6 正弦驅動電路之選用 20 2-7 電刺激系統分析 24 2-7-1 電刺激模式 24 2-7-2 電刺激波形之選用 24 2-7-3 電刺激策略 26 2-7-4 神經細胞等效模型與動作電位介紹 28 第三章 電刺激器感應耦合結構模擬與研製 31 3-1 前言 31 3-2 整體系統架構簡述 31 3-3 感應耦合結構模擬與分析 32 3-3-1 印刷電路板感應線圈之幾何形狀分析 32 3-3-2 印刷電路板感應線圈分析 37 3-3-3 體外、植入側感應線圈製作 40 3-4 諧振電路分析 46 第四章 植入式神經電刺激器硬體電路 52 4-1 前言 52 4-2 整體系統電路架構 52 4-3 體外側電路 53 4-3-1 射頻振盪電路 53 4-3-2 Class-E諧振變流器 54 4-3-3 穩壓電路和驅動電路 57 4-3-4 鎖相迴路 58 4-3-5 電壓感測電路 60 4-4 植入側電路 61 4-4-1 整流濾波器 61 4-4-2 穩壓轉換器 62 4-4-3 PIC單晶片控制電路 64 4-4-4 數位類比轉換電路 66 4-4-5 壓控電流源電路 67 4-5 非接觸式神經電刺激系統設計流程 68 第五章 系統實驗結果 71 5-1 前言 71 5-2 系統規格與硬體電路 71 5-3 IsSpice電路模擬 72 5-4 系統實驗結果與波形量測 75 5-5 耦合結構量測結果與分析 80 第六章 結論與未來研究方向 84 6-1 結論 84 6-2 未來研究方向 85 參考文獻 86

    [1]N. Hoshimiya, H. Matsuki, and Y. Handa, “Implantable multichannel FES system with high performance immunity to electromagnetic interference,’’ in Proc. IEEE EMBS, 1998, pp. 2257-2260.
    [2]S. Khosravani, N. Lahimgarzadeh, and A. Maleki, “Developing a stimulator and interface for FES-cycling rehabilitation system,’’ in Proc. IEEE ICBME, 2011, pp. 175-180.
    [3]H. Sakamoto, K. Harada, S. Washimiya, and Y. Matstuda, “A non-con¬tact charge system of electric vehicle in the next gener-ation,’’ in Proc. IEEE Magn., 2003, pp. ER-16.
    [4]U. K. Madawala, D. J. Thrimawithana, and N. Kularatna, “An ICPT-su¬percapacitor hybrid system for surge-free power transfer,’’ IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3287-3297, Dec. 2007.
    [5]W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,’’ IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
    [6]S. Y. Hui, “Planar wireless charging technology for portable electronic products and Qi,’’ IEEE JPROC, vol. 101, no. 6, pp. 1290-1301, June 2013.
    [7]M. Mochizuki, A. Asada, T. Ura, M. Fujita, M. Sato, Y. Matsumoto, O. L. Colombo, T. Tanaka, Z. Hong, and K. Nagahashi, “Fundamental developments of new generation observation seafloor geodetic system based on AUV technology,’’ in Proc. IEEE Kobe Techno-Ocean, 2008, pp.1-4.
    [8]J. D. Boeij, E. Lomonova, and D. Jorge, “Contactless planar actuator with manipulator: a motion system without cables and physical contact between the mover and fixed world,’’ IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 1930-1938, Nov. 2009.
    [9]S. Hashi, S. Yabukami, H. Kanetaka, K. Ishiyama, and K. I. Arai, “Wireless magnetic position-senesing system using optimized pickup coils for higher accuracy,’’ IEEE Trans. Magn. vol. 47, no. 10, pp. 3542-3545, Oct. 2011.
    [10]K. Finkenzeller, RFID Handbook. 2nd ed., Wiely, 2003.
    [11]http://www.vahle.com.cn/index.php?idx=18, reference date: 2013/07.
    [12]http://www.wampfler.com/index.asp?id=75&e1=11&e2=31&kgref=127&lang=E, reference date: 2007/07.
    [13]http://www.jungheinrich.com/en/automatic-industrial-trucks/materials-handling-system/, reference date: 2013/07.
    [14]http://www.daifuku.com/business/efa/index.html, reference date: 2013.
    [15]http://www.amidof.com.tw/ncpt.php, reference date: 2010/07.
    [16]http://big5.citygf.com/house/HS_009012/201301/t20130125_4138801.html, reference date: 2013/01/17.
    [17]http://www.railwaybulletin.com/2013/04/bombardier-to-supply-trams-to-the-city-of-nanjing, reference date: 2013/01.
    [18]http://www.sharp.co.jp/products/sh13c/index.html, date: 2011/05/16.
    [19]http://www.nokia.com/global/products/phone/lumia925/, reference date: 2013/05/14
    [20]http://www.showa-aircraft.co.jp/products/EV/catalog_kyuuden_2011-07.pdf, reference date: 2009/04/21
    [21]W. T. Liberson, H. J. Holmquest, D. scot, M.Dow, and H. Illinois, “Functional electrotherapy: stimulation of the personal nerve synchronized with the swing phase of the gait of hemiplegic patients,’’ in Proc. Archives of Physical Medicine &Rehabilitation, 1961, pp.101~105.
    [22]S. Shapiro, R. Borgens, R. Pascuzzi, K. Roos, M. Groff, S, Purvines, R. B. Rodgers, S. Hagy, and P. Nelson, “Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial,’’ J. Neurosurgery, vol. 2, no. 1, pp. 1-3, Jan. 2005.
    [23]http://www.abiomed.com/products/heart-replacement/, reference date: 2001/07/2
    [24]H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “In-vestigation of coil geometry for transcutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
    [25]M. Watada, K. Iwawaki, T. Tamada, K. Ouchi, S. Takatani, and Y. S. Um, “The development of core-type transcutaneous energy transmission system for artificial heart,” in Proc. IEEE EMBS, 2005, pp. 3849-3852.
    [26]J. Ma, Q. Yang, and H. Chen, “Transcutaneous energy and in-formation transmission system with optimized parameters for the artificial heart,” IEEE Trans. Appl. Supercond., vol. 20, no. 23, pp. 798-807, June 2010.
    [27]D. Xia and L Xia, “Non-contact driving device of artificial heart and its magnetic field analysis,” IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 732-735, June 2012.
    [28]D. B. Shire, S. K. Kelly, J. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, W. A. Drohan, O. Mendoza, L. Theogarajan, J. L. Wyatt, and J. F. Rizzo, “Development and implantation of a minimally invasive wire¬less subretinal neurostimulator,” IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2502-2511, Oct. 2009.
    [29]J. F. Rizzo, D. B. Shire, S. K. Kelly, P. Troyk, M. Gingerich, B. McKee, A. Priplata, J. Chen, W. Drohan, P. Doyle, O. Mendoza, L. Theogarajan, S. Cogan, and J. L. Wyatt, “Development of the boston retinal Prosthesis,” in Proc. IEEE EMBS, 2011, pp. 3135-3138.
    [30]Y. Zhao, M. Nandra, C. C. Yu, and Y. C. Tai, “High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis,” in Proc. IEEE EMBC, 2012, pp. 6583-6586.
    [31]Z. Wang, S. Mai, C. Zhang, and H. Chen, “Design practice of pow-er-oriented integrated circuits for biomedical implant systems,” in Proc. IEEE Electron. Circuits Syst., 2007, pp. 78-81.
    [32]S. Mai, C. Zhang, and Z. Wang, “An application-specific low power speech processor for cochlear implants,” in Proc. IEEE Biomed. Cir-cuits Syst., 2009, vol. 26, pp. 177-180.
    [33]T. Lehmann, H. Chun, and Y. Yang, “Power saving design techniques for implantable neuro-stimulators,” in Proc. IEEE MWASCAS, 2011, pp. 1-4.
    [34]N. Tam, S. Zupancic, and D. Y. C. Lie, “Engineering challenges in cochlear implants design and practice,” IEEE Circuits Syst. Mag., vol. 12, no. 24, pp. 47-55, Nov. 2012.
    [35]H. Taghavi, B. Hkansson, and S. Reinfeldt, “Analysis and design of RF power and data link using amplitude modulation of class-E for a novel bone conduction implant,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3050-3059, Nov. 2012.
    [36]H. W. Chiu, M. L. Lin, C. W. Lin, I. H. Ho, W. T. Lin, P. H. Fang, Y. C. Lee, Y. R. Wen, and S. S. Lu, “Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 350-359, Dec. 2010.
    [37]F. Sato, T. Komoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, July 2004.
    [38]Z. Yang, W. Liu, and E. Basham, “Inductor modeling in woreless links for implantable electronics,” IEEE Trans. Mang., vol. 43, no. 10, pp. 3851-3860, Oct. 2007.
    [39]P. Cong, M. A. Suster, N. Chaimanonart, and D. J. Young, “Wireless power recharging for implantable bladder pressure sensor,” in Proc. IEEE ICSENS, 2009, pp. 1670-1673.
    [40]D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-607.
    [41]T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, Z. Wang, and Z. Wang, “An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy,” in Proc. IEEE EMBC, 2010, pp. 6531-6534.
    [42]M. P. Van, “High-efficiency transmission for medical implants,” IEEE J. Solid-State Circuits Mag., vol. 3, no. 1, pp. 47-59, Jan. 2011.
    [43]http://www.motc.gov.tw/post/home.jsp?id=888&websitelink=artwebsite.jsp&parentpath=0,364,885, reference date: 2012/11/14
    [44]S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of the tissues,” in Proc. Phys. Med. Biol., 1996, pp. 2271-2293.
    [45]ICNIRP, “Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300GHz),” Health Physics, vol. 74, 1998.
    [46]N. O. Sokal and A. D. Sokal, “ClassE-a new class of high-efficiency tuned single-ended switching power amplifiers,’’ IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-176, June 1975.
    [47]C. M. Zierhofer and E. S. Hochmair, “High-efficiency cou-pling-insensitive transcutaneous power and data transmission via an inductive link,’’ IEEE Trans. Biomed. Eng., vol. 37, no. 7, pp. 716-722, July 1990.
    [48]D. N. Rushton, “Functinal electrical stimulation,” Physiol. Meas., vol. 18, no. 4, pp. 241-275, 1997.
    [49]O. Macherey, A. V. Wieringen, R. P. Carlyon, J. M. Deeks, and J. Wouters, “Asymmetric pulses in cochlear implants: effect of pulse shape, polarity, and rate,” JARO, vol. 7, pp. 253-266, May 2006.
    [50]S. C. Tang, S. S. Y. R. Hui, and H. S.-H. Chung, “Characterization of coreless printed circuit Board (PCB) transformers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1275-1282, Nov. 2000.
    [51]J. Saleem, A. Majid, R. Ambatapudi, H. B. Kotte, and K. Bertilsson, “Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, May 1999.
    [52]B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device, ” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, Feb. 2004.
    [53]U. M. Jow and M. Ghovanloo, “Optimization of data coils in a multiband wireless link for neuroprosthetic implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 5, pp. 301-310, Oct. 2010.
    [54]W. Wu and Q. Fang, “Design amd simulation of printed sporal coil used in wireless power transmission systems for implant medical devices,” in Proc. IEEE EMBC, 2011, pp. 4018-4021.
    [55]G. K. Felic, D. Ng, and E. Skafidas, “Investigation of frequen-cy-dependent effects in inductive coils for implantable electronics,” IEEE Trans. Magn., vol. 49, no. 4, pp. 1353-1360, Apr. 2013.
    [56]W. K. Stephen and G. N. John, From neuron to brain: a cellular ap-proach to the function of the nervous system. 2nd ed., Wiely,1995.
    [57]蕭又滋,植入式微功能性電刺激系統,國立中山大學電機工程學系碩士論文,2004年。
    [58]楊承彥,IEEE 802.15.4 協定堆疊實作與硬體ASIC設計以及應用於生醫監控之生理訊號傳送器,國立中山大學電機工程學系碩士論文,2010年。
    [59]http://www.libertytimes.com.tw/2007/new/jun/7/today-t1.htm, refer-ence date: 2007/06
    [60]http://history.n.yam.com/liontravel/travel/201107/20110722510857.html, reference date: 2011/07/21
    [61]林良士,中頻與低頻經皮神經電刺激系統之研製,國立成功大學電機工程學系碩士論文,2004年。
    [62]李昱廷,發展應用於神經介面之無線生醫微系統,國立成功大學醫學工程研究所碩士論文,2005年。
    [63]劉彥田,非接觸式射頻電能傳輸技術於植入式神經電刺激器之研究,國立成功大學電機工程學系碩士論文,2010年。
    [64]A. K. RamRakhyani and G. Lazzi, “Multicoil telemetry system for compensation of coil misalignment effects in implantable systems,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1675-1678, Oct. 2012.
    [65]A. Ali, T. J. Ahamd, M. A. Ajaz, and S. A. Khan, “Laboratory prototype of cochlear implant: Design and techniques,” in Proc. IEEE EMBC, 2009, pp. 803-806.

    下載圖示
    2015-08-14公開
    QR CODE