| 研究生: |
塗文祥 Tu, Wen-Xiang |
|---|---|
| 論文名稱: |
新工和養護路段之多孔隙瀝青混凝土路面績效評估 Performance Evaluation of Porous Asphalt Concrete for Newly- Constructed and Rehabilitated Sections |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 多孔隙瀝青混凝土(PAC) 、鋪面績效 、透水量 、噪音量 、車轍量 、平坦度 、抗滑度 |
| 外文關鍵詞: | Porous Asphalt Concrete (PAC), Pavement Performance, Functionality, Durability |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣在持續性降雨或強降雨的環境中,路面若無法迅速排水,將增加行車風險;多孔隙瀝青混凝土(Porous Asphalt Concrete,PAC)為開放級配混合料,提供高孔隙率及粗糙表面紋理。本研究評估PAC鋪面績效,探討國道1號五股楊梅高架橋新工和養護工程之PAC路段差異,鋪面績效檢測評估項目為「功能性」、「耐久性」及「安全性」等各項試驗,研究結果中,顯示五股楊梅高架橋之新工和養護路段皆使用超過4年,透水量仍保持900ml/15sec以上,且無剝脫現象,其中,養護路段受限於養護時間,且有重車荷重影響,仍可維持透水量,說明材料和施工管控得宜,新工和養護路段效果相似。另外,颱風所帶來雨量,藉由雨水沖洗和車輛輪胎吸力作用,有助於清通粉塵堵塞之孔隙,提昇鋪面功能性,說明PAC路面具有自清能力。
In an environment of continuous rainfall or heavy rainfall in Taiwan, if the road surface cannot be drained quickly, it will increase the risk of driving; Porous Asphalt Concrete (PAC) is an open graded mixture that provides high porosity and rough surface texture. This study evaluates the performance of PAC pavement and discusses the differences in the PAC sections of the new Wuyi Yangmei viaduct and the maintenance project of National Highway No. 1. The pavement performance test and evaluation projects are tests such as “functionality”, “endurance” and “safety”. The research results show that the new work and maintenance sections of the five-Yangyang viaduct have been used for more than 4 years, and the water permeability has remained above 900ml/15sec, and there is no exfoliation. Among them, the maintenance section is limited by the curing time and there are heavy vehicles. Under the influence of load, the water permeability can still be maintained, indicating that the materials and construction control are appropriate, and the new work and maintenance road sections have similar effects. In addition, the rainfall caused by the typhoon, through the rain washing and the suction of the vehicle tires, helps clear the pores of the dust blockage and enhance the pavement functionality, indicating that the PAC pavement has self-cleaning ability.
參考文獻
小島逸平(1995),「排水性鋪裝」,日本瀝青協會,第66頁。
中央大學(2013),「PAC路面試鋪工程材料試驗及檢測」,中壢。
中華技術期刊(2013),「五股楊梅拓建工程技術」,財團法人中華顧問工程司,第98期。
公共工程施工綱要規範(2011),「第02898章 標線」,行政院公共工程委員會,第4頁。
公共工程施工綱要規範(2013),「第02798章 多孔隙瀝青混凝土鋪面」,行政院公共工程委員會,第10-11頁。
公共工程施工綱要規範(2017),「第02742章 瀝青混凝土鋪面」,行政院公共工程委員會,第14、29頁。
日本道路協會(1997),「排水性鋪裝技術指針(案)」,日本。
平出純一(1998),「排水性舗装の取り組み」,日本瀝青協會,pp.2~3。
交通部臺灣區國道高速公路局(2011),「高速公路養護手冊」,交通部臺灣區國道高速公路局技術規範,第3-9頁。
夏明勝(2007),「瀝青混凝土鋪面特性與噪音防制」,臺灣公路工程,第33卷第11期-508。
孫揚洲(2010),「多孔隙瀝青鋪面績效及生命週期經濟效益評估」,國立成功大學土木工程研究所碩士論文,台南。
陳建旭、蔡攀鰲 (2011) 多孔隙及石膠泥瀝青混凝土鋪面養護手冊,高速公路局中區工程處,台中。
黃博仁(2001),「排水性瀝青混合料鋪面試驗路段之成效評估」,國立中央大學土木工程研究所碩士論文,桃園。
蔡攀鰲(2004),「瀝青混凝土」三民書局,台北。
American Society of Testing and Materials (ASTM) (2013). Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester, E303-93, West Conshohocken, Pennsylvania.
Antunes, V., A.C. Freire, L. Quaresma, and R. Micaelo (2015). Influence of the geometricaland physical properties of filler in the filler–bitumen interaction. Construction and Building Materials, Vol.76, pp.322–329.
Alvarez, A.E., A.E. Martin, and C. Estakhri (2011). A review of mix design and evaluation research for permeable friction course mixtures. Construction and Building Materials, Vol.25, pp.108-113.
Chen, J.S. and C.C. Huang (2010). Effect of surface characteristics on bonding properties of bituminous tack coat. Transportation Research Record: Journal of the Transportation Research Board, No. 2180, pp.142-149.
Cong, P., S. Chen, and H. Chen (2012). Effects of diatomite on the properties of asphalt binder. Construction and Building Materials, Vol.30, pp.495-499.
Elisabete, F., P. Paulo, Luís de Picado-Santosb and S. Adriana (2009). Traffic noise changes due to water on porous and dense asphalt surfaces. Road Materials and Pavement Design, Vol.10, pp.587-607.
Fay, L. and M. Akin (2013). Snow and ice control on porous and permeable pavements – a literature review and state of the practice. 93rd Annual Meeting for Transportation Research Board.
Henry, J.J. (2000). Evaluation of pavement friction characteristics. Transportation Research Board, NCHRP Synthesis 291, National Research Council, Washington, D.C.
Hernandez-Saenz, M.A., S. Caro, E. Arámbula-Mercado, and A.E. Martin (2016). Mix design, performance and maintenance of permeable friction courses (PFC) in the United States: State of the art. Construction and Building Materials, Vol.111, pp.358–367.
Hossam, F.H., A. Salim, and T. Ramzi (2005). Evaluation of open-graded friction course mixtures containing cellulose fibers and styrene butadiene rubber polymer. Journal of Materials in Civil Engineering, Vol.17, pp.416-422.
Huber, G.(2000). Performance survey on open-graded friction course mixes. Transportation Research Board, NCHRP Synthesis 284, National Research Council, Washington, D.C.
Ishikawa, K., T. Ueta, and Y. Konno (2003). Sustainability of noise reduction effect of porous asphalt on expressways. Proceedings of the Meeting the Institute of Noise Control Engineering of Japan,Narashino ,pp. 157–160.
Lee, C.S.Y., and G.G. Fleming (1996). Measurement of highway- related noise. U.S. Department of Transportation, FHWA-PD-96- 046.
Liu, K.W., A.E. Alvarez, A.E. Martin, T. Dossey, A. Smit, and C.K. Estakhri (2009). Synthesis of current research on permeable friction courses: performance, design, construction, and maintenance. Report 0-5836-1, Texas Transportation Institute, Austin, Texas.
Lou, Y. (2003). Effect of pavement temperature on frictional properties of hot-mix-asphalt pavement surfaces at the virginia smart road. Master of Science Thesis, Virginia Polytechnic Institute, Virginia State University.
McDaniel, R.S., W.D. Thornton, and J.G. Dominguez (2004). Field evaluation of porous asphalt pavement, report No. SQDH 2004-3, North Central Superpave Center, Purdue University, West Lafayette.
Mohammad, L. N., I. I. Negulescu, Z. Wu, C. Daranga, W.H. Daly, and C. Abadie (2003). Investigation of the use of recy-cled polymer modified asphalt binder in Asphalt Concrete Pavements. Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
Nakanishi, H., K. Asano, and K. Goto (2000). Study on improvement in durability of porous asphalt concrete. Proceedings of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.
Ohkawa, H., T. Sato, and K. Hokari (1993). Study on the estimation of permeability coefficient of drain asphalt. Proceedings of the Japan Society of Civil Engineers, No. 478, pp.101-108.
Oliver J.W.H. (2009). Factors affecting the correlation of skid testing machines and a proposed correlation framework. Road and Transport Research, Vol.18, pp.39-48.
Ongel, A., E. Kohler and J. Harvey (2008). Principal components regression of onboard sound intensity levels. Journal of Transportation Engineering, ASCE, Vol.134, No.11, pp.459-466.
Panda, M. and M. Mazumdar (1999) Engineering properties of eva-modified bitumen binder for paving mixes. Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
Pasetto, M.(2000). Porous asphalt concretes with added microfibers. 2nd Eurasphalt & Eurobitumen Congress, Beacelona, Spain, pp.438-447.
Rungruangvirojn, P., and K. Kanitpong (2010). Measurement of visibility loss due to splash and spray: porous, SMA and conventional asphalt pavements. International Journal of Pavement Engineering, Vol.11, pp.499–510.
Shirke, N. A. and S. Shuler (2009). Cleaning Porous Pavements Using a Reverse Flush Process. Journal of Transportation Engineering, Vol.135, pp.832-838.
Takahashi, S. (2013). Comprehensive study on the porous asphalt effects on expressways in japan: based on field data analysis in the last decade. Road Materials and Pavement Design, Vol. 14(2), pp.239–255.
Tan, S. A., T. F. Fwa and K. C. Chai (2004). Drainage consid-erations for porous asphalt surface course design. Journal of the Transportation Research Board, Transportation Research Record No. 1868, pp.142–149.
Tappeiner, W.J. (1993). Open-Graded Asphalt Friction Course, NAPA IS115.
Watson, D., A. Johnson and D. Jared (1998). Georgia department of transportation’s progress in open-graded friction course development. Transportation Research Record 1616, pp.30-35.
Yoshikuni, O. and T. Takshi (1995). Present status asphalt on espressway in japan. Proceedings of 8th Road Engineering Association of Asia and Australasia, Vol.1, pp.301-306.
校內:2023-07-21公開