簡易檢索 / 詳目顯示

研究生: 塗文祥
Tu, Wen-Xiang
論文名稱: 新工和養護路段之多孔隙瀝青混凝土路面績效評估
Performance Evaluation of Porous Asphalt Concrete for Newly- Constructed and Rehabilitated Sections
指導教授: 陳建旭
Chen, Jian-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 72
中文關鍵詞: 多孔隙瀝青混凝土(PAC)鋪面績效透水量噪音量車轍量平坦度抗滑度
外文關鍵詞: Porous Asphalt Concrete (PAC), Pavement Performance, Functionality, Durability
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣在持續性降雨或強降雨的環境中,路面若無法迅速排水,將增加行車風險;多孔隙瀝青混凝土(Porous Asphalt Concrete,PAC)為開放級配混合料,提供高孔隙率及粗糙表面紋理。本研究評估PAC鋪面績效,探討國道1號五股楊梅高架橋新工和養護工程之PAC路段差異,鋪面績效檢測評估項目為「功能性」、「耐久性」及「安全性」等各項試驗,研究結果中,顯示五股楊梅高架橋之新工和養護路段皆使用超過4年,透水量仍保持900ml/15sec以上,且無剝脫現象,其中,養護路段受限於養護時間,且有重車荷重影響,仍可維持透水量,說明材料和施工管控得宜,新工和養護路段效果相似。另外,颱風所帶來雨量,藉由雨水沖洗和車輛輪胎吸力作用,有助於清通粉塵堵塞之孔隙,提昇鋪面功能性,說明PAC路面具有自清能力。

    In an environment of continuous rainfall or heavy rainfall in Taiwan, if the road surface cannot be drained quickly, it will increase the risk of driving; Porous Asphalt Concrete (PAC) is an open graded mixture that provides high porosity and rough surface texture. This study evaluates the performance of PAC pavement and discusses the differences in the PAC sections of the new Wuyi Yangmei viaduct and the maintenance project of National Highway No. 1. The pavement performance test and evaluation projects are tests such as “functionality”, “endurance” and “safety”. The research results show that the new work and maintenance sections of the five-Yangyang viaduct have been used for more than 4 years, and the water permeability has remained above 900ml/15sec, and there is no exfoliation. Among them, the maintenance section is limited by the curing time and there are heavy vehicles. Under the influence of load, the water permeability can still be maintained, indicating that the materials and construction control are appropriate, and the new work and maintenance road sections have similar effects. In addition, the rainfall caused by the typhoon, through the rain washing and the suction of the vehicle tires, helps clear the pores of the dust blockage and enhance the pavement functionality, indicating that the PAC pavement has self-cleaning ability.

    目 錄 中文摘要................................................................................................I 英文延伸摘要........................................................................................II 致謝......................................................................................................V 目錄.....................................................................................................VI 圖目錄..................................................................................................IX 表目錄..................................................................................................XI 第一章 緒論.......................................................................................1-1 1.1 前言......................................................................................1-1 1.2 研究動機................................................................................1-2 1.3 研究目的................................................................................1-3 1.4 研究範圍................................................................................1-3 第二章 文獻回顧................................................................................2-1 2.1 多孔隙瀝青混凝土.................................................................2-1 2.1.1 瀝青..............................................................................2-2 2.1.2 PAC與開放級配摩擦層之比較......................................2-2 2.1.3 粒料..............................................................................2-3 2.1.4 填充料..........................................................................2-3 2.1.5 纖維..............................................................................2-4 2.2 PAC鋪面的功能性(Functionality)...........................................2-5 2.2.1 排水效果.......................................................................2-5 2.2.2 減噪效果.......................................................................2-6 2.2.3 PAC鋪面之機能回復.....................................................2-8 2.3 PAC鋪面的耐久性(Durability).................................................2-9 2.4 PAC鋪面的安全性(Safety)...................................................2-10 第三章 研究方法................................................................................3-1 3.1 研究流程................................................................................3-1 3.2 材料性質................................................................................3-3 3.2.1 粒料級配.......................................................................3-3 3.3 試驗路段................................................................................3-5 3.4 試驗方法................................................................................3-8 3.4.1 功能性評估:透水量試驗...............................................3-8 3.4.2 功能性評估:噪音量試驗...............................................3-9 3.4.3 耐久性評估:車轍量試驗...............................................3-9 3.4.4 耐久性評估:平坦度試驗.............................................3-10 3.4.5 安全性評估:抗滑度試驗.............................................3-11 第四章 現地鋪面績效與討論..............................................................4-1 4.1 材料和配合設計.....................................................................4-1 4.1.1 粒料物性.......................................................................4-1 4.1.2 瀝青物性.......................................................................4-3 4.1.3 級配曲線.......................................................................4-5 4.1.4 瀝青用量.......................................................................4-9 4.1.5 混合料性質.................................................................4-10 4.2 功能性:透水量.....................................................................4-11 4.3功能性:噪音量.....................................................................4-13 4.4耐久性:車轍量.....................................................................4-15 4.5 耐久性:平坦度....................................................................4-16 4.6 安全性:抗滑度....................................................................4-18 4.7 綜合評估...............................................................................4-20 第五章 結論與建議..........................................................................結-1 5.1 結論.....................................................................................結-1 5.2 建議.....................................................................................結-2 參考文獻...........................................................................................參-1附錄..................................................................................................附-1 圖目錄 圖2.2.1 PAC路段噪音量預測【Ishikawa et al., 2003】.....................2-7 圖3.1.1 PAC鋪面績效檢測研究流程圖……………............................3-2 圖3.3.1 試驗路段位置圖....................................................................3-7 圖3.3.2 新工和養護PAC鋪面結構示意圖.........................................3-7 圖3.4.1 透水量試驗(完工後,新建段56個月、養護段57個月)............3-8 圖3.4.2 噪音量試驗(完工後,新建段56個月、養護段57個月)............3-9 圖3.4.3 車轍量試驗(完工後,新建段56個月、養護段57個月)..........3-10 圖3.4.4 平坦度試驗(完工後,新建段56個月、養護段57個月)..........3-11 圖3.4.5 抗滑度試驗(完工後,新建段56個月、養護段57個月)..........3-12 圖4.1.1 新工段 A19T3N56.9之PAC級配曲線.................................4-6 圖4.1.2 新工段A19T3N43.6及A19T3S33.6之PAC級配曲線...........4-6 圖4.1.3 新工段A19T3S33.6之PAC級配曲線..................................4-7 圖4.1.4 新工段A19T3S53.7之PAC級配曲線..................................4-7 圖4.1.5 養護段A13T2S74.5之PAC級配曲線..................................4-8 圖4.1.6 養護段A19T3S74.9之PAC級配曲線..................................4-8 圖4.2.1 透水量變化..........................................................................4-11 圖4.3.1 噪音量變化 ........................................................................4-13 圖4.3.2 粒徑及厚度對平均噪音量之影響.........................................4-14 圖4.4.1 車轍量變化 ........................................................................4-15 圖4.5.1 完工後新工段56個月、養護段57個月之IRI試驗結果........4-16 圖4.5.2 輪跡處IRI值變化................................................................4-17 圖4.6.1 新工段56個月、養護段57個月之BPN值結果...................4-18 圖4.6.2 BPN值變化.......................................................................4-19 圖4.7.1 新工路段A19T3N56.9完工後56個月現況.........................4-20 圖4.7.2 新工路段A19T3N43.6完工後56個月現況.........................4-20 圖4.7.3 新工路段A19T3S33.6完工後56個月現況.........................4-21 圖4.7.4 新工路段A19T3S53.7完工後56個月現況.........................4-21 圖4.7.5 養護路段A13T2S74.5完工後57個月現況.........................4-21 圖4.7.6 養護路段A19T3S74.9完工後57個月現況.........................4-22 圖4.7.7 養護路段A19T3S74.6局部剝脫跳料................................4-23 圖4.7.8 PAC鋪面應力分析示意圖..................................................4-23 表目錄 表3.2.1 多孔隙瀝青混凝土(PAC)規格................................................3-4 表3.3.1 PAC鋪面檢測點位.................................................................3-5 表4.1.1 細粒料試驗結果與規範【國工局、高公局】............................4-2 表4.1.2 粗粒料試驗結果與規範【國工局、高公局】............................4-2 表4.1.3 AR-8000瀝青試驗規範【國工局】..........................................4-3 表4.1.4 高黏改質瀝青試驗結果與規範【國工局】..............................4-4 表4.1.5 改質III型瀝青試驗結果與規範【高公局】..............................4-4 表4.1.6 針入度等級60-70添加8%TPS瀝青試驗規範【高公局】......4-5 表4.1.7 配比設計之瀝青用量【國工局、高公局】................................4-9 表4.1.8 PAC品質試驗結果與規範【國工局、高公局】.........................4-10

    參考文獻
    小島逸平(1995),「排水性鋪裝」,日本瀝青協會,第66頁。
    中央大學(2013),「PAC路面試鋪工程材料試驗及檢測」,中壢。
    中華技術期刊(2013),「五股楊梅拓建工程技術」,財團法人中華顧問工程司,第98期。
    公共工程施工綱要規範(2011),「第02898章 標線」,行政院公共工程委員會,第4頁。
    公共工程施工綱要規範(2013),「第02798章 多孔隙瀝青混凝土鋪面」,行政院公共工程委員會,第10-11頁。
    公共工程施工綱要規範(2017),「第02742章 瀝青混凝土鋪面」,行政院公共工程委員會,第14、29頁。
    日本道路協會(1997),「排水性鋪裝技術指針(案)」,日本。
    平出純一(1998),「排水性舗装の取り組み」,日本瀝青協會,pp.2~3。
    交通部臺灣區國道高速公路局(2011),「高速公路養護手冊」,交通部臺灣區國道高速公路局技術規範,第3-9頁。
    夏明勝(2007),「瀝青混凝土鋪面特性與噪音防制」,臺灣公路工程,第33卷第11期-508。
    孫揚洲(2010),「多孔隙瀝青鋪面績效及生命週期經濟效益評估」,國立成功大學土木工程研究所碩士論文,台南。

    陳建旭、蔡攀鰲 (2011) 多孔隙及石膠泥瀝青混凝土鋪面養護手冊,高速公路局中區工程處,台中。
    黃博仁(2001),「排水性瀝青混合料鋪面試驗路段之成效評估」,國立中央大學土木工程研究所碩士論文,桃園。
    蔡攀鰲(2004),「瀝青混凝土」三民書局,台北。
    American Society of Testing and Materials (ASTM) (2013). Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester, E303-93, West Conshohocken, Pennsylvania.
    Antunes, V., A.C. Freire, L. Quaresma, and R. Micaelo (2015). Influence of the geometricaland physical properties of filler in the filler–bitumen interaction. Construction and Building Materials, Vol.76, pp.322–329.
    Alvarez, A.E., A.E. Martin, and C. Estakhri (2011). A review of mix design and evaluation research for permeable friction course mixtures. Construction and Building Materials, Vol.25, pp.108-113.
    Chen, J.S. and C.C. Huang (2010). Effect of surface characteristics on bonding properties of bituminous tack coat. Transportation Research Record: Journal of the Transportation Research Board, No. 2180, pp.142-149.
    Cong, P., S. Chen, and H. Chen (2012). Effects of diatomite on the properties of asphalt binder. Construction and Building Materials, Vol.30, pp.495-499.
    Elisabete, F., P. Paulo, Luís de Picado-Santosb and S. Adriana (2009). Traffic noise changes due to water on porous and dense asphalt surfaces. Road Materials and Pavement Design, Vol.10, pp.587-607.
    Fay, L. and M. Akin (2013). Snow and ice control on porous and permeable pavements – a literature review and state of the practice. 93rd Annual Meeting for Transportation Research Board.
    Henry, J.J. (2000). Evaluation of pavement friction characteristics. Transportation Research Board, NCHRP Synthesis 291, National Research Council, Washington, D.C.
    Hernandez-Saenz, M.A., S. Caro, E. Arámbula-Mercado, and A.E. Martin (2016). Mix design, performance and maintenance of permeable friction courses (PFC) in the United States: State of the art. Construction and Building Materials, Vol.111, pp.358–367.
    Hossam, F.H., A. Salim, and T. Ramzi (2005). Evaluation of open-graded friction course mixtures containing cellulose fibers and styrene butadiene rubber polymer. Journal of Materials in Civil Engineering, Vol.17, pp.416-422.
    Huber, G.(2000). Performance survey on open-graded friction course mixes. Transportation Research Board, NCHRP Synthesis 284, National Research Council, Washington, D.C.
    Ishikawa, K., T. Ueta, and Y. Konno (2003). Sustainability of noise reduction effect of porous asphalt on expressways. Proceedings of the Meeting the Institute of Noise Control Engineering of Japan,Narashino ,pp. 157–160.
    Lee, C.S.Y., and G.G. Fleming (1996). Measurement of highway- related noise. U.S. Department of Transportation, FHWA-PD-96- 046.
    Liu, K.W., A.E. Alvarez, A.E. Martin, T. Dossey, A. Smit, and C.K. Estakhri (2009). Synthesis of current research on permeable friction courses: performance, design, construction, and maintenance. Report 0-5836-1, Texas Transportation Institute, Austin, Texas.
    Lou, Y. (2003). Effect of pavement temperature on frictional properties of hot-mix-asphalt pavement surfaces at the virginia smart road. Master of Science Thesis, Virginia Polytechnic Institute, Virginia State University.
    McDaniel, R.S., W.D. Thornton, and J.G. Dominguez (2004). Field evaluation of porous asphalt pavement, report No. SQDH 2004-3, North Central Superpave Center, Purdue University, West Lafayette.
    Mohammad, L. N., I. I. Negulescu, Z. Wu, C. Daranga, W.H. Daly, and C. Abadie (2003). Investigation of the use of recy-cled polymer modified asphalt binder in Asphalt Concrete Pavements. Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
    Nakanishi, H., K. Asano, and K. Goto (2000). Study on improvement in durability of porous asphalt concrete. Proceedings of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.
    Ohkawa, H., T. Sato, and K. Hokari (1993). Study on the estimation of permeability coefficient of drain asphalt. Proceedings of the Japan Society of Civil Engineers, No. 478, pp.101-108.
    Oliver J.W.H. (2009). Factors affecting the correlation of skid testing machines and a proposed correlation framework. Road and Transport Research, Vol.18, pp.39-48.
    Ongel, A., E. Kohler and J. Harvey (2008). Principal components regression of onboard sound intensity levels. Journal of Transportation Engineering, ASCE, Vol.134, No.11, pp.459-466.
    Panda, M. and M. Mazumdar (1999) Engineering properties of eva-modified bitumen binder for paving mixes. Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
    Pasetto, M.(2000). Porous asphalt concretes with added microfibers. 2nd Eurasphalt & Eurobitumen Congress, Beacelona, Spain, pp.438-447.
    Rungruangvirojn, P., and K. Kanitpong (2010). Measurement of visibility loss due to splash and spray: porous, SMA and conventional asphalt pavements. International Journal of Pavement Engineering, Vol.11, pp.499–510.
    Shirke, N. A. and S. Shuler (2009). Cleaning Porous Pavements Using a Reverse Flush Process. Journal of Transportation Engineering, Vol.135, pp.832-838.
    Takahashi, S. (2013). Comprehensive study on the porous asphalt effects on expressways in japan: based on field data analysis in the last decade. Road Materials and Pavement Design, Vol. 14(2), pp.239–255.
    Tan, S. A., T. F. Fwa and K. C. Chai (2004). Drainage consid-erations for porous asphalt surface course design. Journal of the Transportation Research Board, Transportation Research Record No. 1868, pp.142–149.
    Tappeiner, W.J. (1993). Open-Graded Asphalt Friction Course, NAPA IS115.
    Watson, D., A. Johnson and D. Jared (1998). Georgia department of transportation’s progress in open-graded friction course development. Transportation Research Record 1616, pp.30-35.
    Yoshikuni, O. and T. Takshi (1995). Present status asphalt on espressway in japan. Proceedings of 8th Road Engineering Association of Asia and Australasia, Vol.1, pp.301-306.

    無法下載圖示 校內:2023-07-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE