| 研究生: |
林啟聖 Lin, Chi-Sheng |
|---|---|
| 論文名稱: |
振盪水柱波浪發電防波堤之波浪作用力分析 Wave Loadings Distribution of Oscillating Water Column Caisson Breakwaters |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu 許泰文 Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 振盪水柱 、波浪發電 、防波堤 、波壓 |
| 外文關鍵詞: | Oscillating water column, Wave power, Breakwater, Wave pressure |
| 相關次數: | 點閱:104 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
再生能源為我國目前積極發展之能源,而波浪發電未來可能成為我國優先開發之海洋能型式之一。於眾多不同種類之波浪發電裝置中,振盪水柱波能轉換系統可用於結合防波堤結構,使其成為兼具能源供應與近岸保護之多功能結構。針對我國振盪水柱系統結合防波堤結構之開發,本研究以室內模型實驗探討結構物受力與波能之轉換,並將本研究選定之開發場址花蓮港區周遭海域之波浪條件進行縮尺轉換,作為實驗中之造波條件,以評估現地結構物受力特性與波能之擷取效率。振盪水柱式防波堤受力研究之部分,透過模型表面之壓力量測得到結構物所受之外力,分別探討振盪水柱式防波堤不同截面之波壓分佈特性以及整體結構之合力反應;結果顯示,受到防波堤迎波面開孔之影響,振盪水柱式防波堤之波壓分佈將與未開孔直立壁防波堤不同;在波浪相對水深為0.2以下時,防波堤整體受力可藉由Goda提出之經驗公式計算其側向合力,但對於整體結構所受力矩而言,以經驗公式計算並不適用。針對防波堤振盪水柱發電系統之波能擷取,實驗中利用進出氣孔之氣流流速做為評估波能擷取之指標。於本研究選取之結構尺寸配置條件下,造成振盪氣室內最佳氣流流速之波浪週期與花蓮海域之平均示性週期相同。本研究之成果可供我國後續發展波浪發電開發參考。
Renewable energy generation is currently under active development. Wave power is an example of such energy and could be one of the primarily developed source of energy for our country in the future. Within all the wave energy converter types, the oscillating water column system could be combined with caisson breakwater structures to provide both power supply generation and near shore protection. This study examines the stability and pneumatic reaction of the oscillating water column breakwater, using a Hualien test site. Spatial pressure measurements using surface water pressure on the caisson were used for stability analysis. The result shows that the gate of the oscillating water column breakwater may change the pressure distribution. For relative depths less than 0.2, the horizontal force of the oscillating water column breakwater can be approximated by the Goda formula, but rotating torque, however, is underestimated compared to the measurements. For the pneumatic reaction, the measurement result shows that, under the experimental constraints of this study, the wave conditions which create the best pneumatic reaction are coincident with the field wave conditions in Hualien. This study could be referenced for further development of wave energy in Taiwan.
1. Bishop, A. W. (1955). ”The use of the slip circle in the stability analysis of slopes.” Geotechnique, Vol. 5, No. 1, pp. 7-17.
2. Brendmo, A., Falnes, J., Lillebekken, P. M. (1996).” Linear modeling of oscillating water column including viscous loss,” Applied Ocean Reserch, Vol. 18, pp. 65-75.
3. Boake, C. B., Whittaker, T. J. T., Folley, M. (2002).”Overview and Initial Operational Experience of the LIMPET Wave Energy Plant,” Proceedings of The Twelfth International Offshore and Polar Engineering Conference, Vo. 1, pp. 586-594.
4. Clement, A. H. (1997).” Dynamic nonlinear response of OWC wave energy device,” International Journal of Offshore Polar Engineering, Vol. 7, No. 2, pp. 154-159.
5. Chou, C. R., and Quyang, K. (1999).”The deformation of solitary waves on steep slopes,” Journal of the Chinese Institute of Engineers, Vol. 22, No. 6, pp. 805-812.
6. Dean, R.G., Dalrymple, R.A. (1984). Water Wave Mechanics for Engineers and Scientists, World Scientific Publishing Co. Pte. Ltd.
7. Evans, D. V. (1978). ”The Oscillating Water Column Wave-energy Device,” Journal of the Institute of Maths Applics, Vol. 22, pp. 423-433.
8. Evans, D. V. (1982). ”Wave-power Absorption by System of Oscillation Surface Pressure Distribution,” Journal of Fluid Mechanism., Vol. 114, pp. 481-499.
9. Folley, M., Curran R., Boake C., Whittaker, T. (1997).” The Energy Conversion Performance of Several Types of Wells Turbine Designs,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 211, No. 2, pp. 133-145.
10. Herbich, J. B. (2000). Handbook of Coastal Engineering, McGraw-Hill Professional; 1 edition.
11. Hong, S.-W., Hong, D.-C., Hong, S.-Y., Kim, J.-H., Choi, H.-S., Lew, J.-M. (2005). ”Comparison of Numerical Dynamic Pressure Inside a Pneumatic Chamber of an OWC Device with Measured Dynamic Pressure by Model Experiments,” Proceedings of The Fifteenth International Offshore and Polar Engineering Conference, pp. 542-548.
12. Huang, Y., Shi, H., Liu, D., Liu, Z. (2010). ”Study on the breakwater caisson as oscillating water column facility,” Journal of Ocean University of China(Oceanic and Coastal Sea Research), pp. 244-250.
13. International Energy Agency (2011). World Energy Outlook, International Energy Agency.
14. Jayakumar. (1994). ”Wave force on oscillating water column type wave energy caisson: an experiment study.” PhD thesis, Department of Ocean Engineering, Indian Institute of Technology, Madras, India.
15. Kortenhaus, A., Voortman, H. (2001). Probabilistic Design Tools for vertical Breakwaters, A.A.BALKEMA PUBLISHERS.
16. Lee, J.-J., M. ASCE, Skjelbreia, J. E., A. M. ASCE, Raichlen, F., M. ASCE (1982). ”Measurement of Velocities in Solitary Waves,” Journal of the Waterway Port Coastal and Ocean Division, Vol. 108, No. 2, pp. 200-218.
17. Liu, Y., Shi, H., Liu, Z., Ma, Z. (2011). ”Experiment Study on A New Designed OWC Caisson Breakwater,” Power and Energy Engineering conference, pp. 1-5.
18. Munk, W. H. (1949).”The solitary wave theory and its application to surf problems,” Annals of the New York Academy of Sciences, Vol. 51, pp. 376-424.
19. Ministry of Transport, Nagase, Yokosuka, Japan (1988). ”Stability and Function of Improved-Type Wave Power Extracting Caisson Breakwater-A Study on Development of Wave Power,” 7th Report, Report of The Port and Harbour Research Institute, Vol.27, No. 2.
20. Ministry of Transport, Nagase, Yokosuka, Japan (1992). ”Field Experiment of A Wave Power Extracting Caisson Breakwater,” Report of The Port and Harbour Research Institute, Vol. 31, No. 2.
21. Müller, G., Whittaker, T. J. T. (1993). ”An Investigation of Breaking Wave Pressures on Incline Walls,” Ocean Engineering, Vol. 20, No. 4, pp. 349-358.
22. Müller, G., Whittaker, T. J. T. (1995). ”Visualization of Flow Conditions Inside A Shoreline Wave Power-Station,” Ocean Engineering, Vol. 22, No. 6, pp. 629-641.
23. Osawa, H., Miyazaki, T. (2005). ”Technical Manual for Oscillating Water Column Type Wave Power Device,” Proceedings of The Fifteenth (2005) International Offshore and Polar Engineering Conference, pp. 549-556.
24. Reddy, M. S., Neelamani, S. (1992). ”Wave Transmission and Reflection Characteristics of A Partially Immersed Rigid Vertical Barrier,” Ocean Engineering, Vol. 19, No. 3, pp. 313-325.
25. Rao, S., Shirlal, K. G., Varghese, R. V., Govindaraja, K. R. (2009).” Physical model studies on wave transmission of a submerged inclined plate breakwater,” Ocean Engineering, Vol. 36, pp. 1199-1207.
26. Sarmento, A. J. N. A, Falcao, A. F. O. (1985).” Wave generation by an oscillating surface pressure and its application in wave energy extraction,” Journal of Fluid Mechanics, Vol. 150, pp. 467-485.
27. Sarmento, A. J. N. A, Brito-Melo, A. (1995).” An experiment-based time-domain mathematical model of OWC power plants.” Proceedings of The Fifth) International Offshore and Polar Engineering Conference, pp. 321-327.
28. Sentürk, U., Özdamar A. (2012). ”Wave Energy Extraction by An Oscillating Water Column With A Gap on The Fully Submerged Front Wall,” Applied Ocean Research, Vol. 37, pp. 174-182.
29. Tseng, R.-S., Wu, R.-H., Huang, C.-C. (2000). ”Model Study of A Shoreline Wave-power System,” Ocean Engineering, Vol. 27, pp. 801-821.
30. Thiruvenkatasamy, K., Neelamani, S., Sato, M. (2005). ”Nonbreaking Wave Forces on Multiresonant Oscillating Water Column Wave Power Caisson Breakwater,” Journal of Waterway, Port, Coastal, and Ocean Engineering, pp. 77-84.
31. Torre-Enciso, Y., Ortubia, I., López de Aguileta, L. I., Marqués, J. (2009). ”Mutriku Wave Power Plant: from the thinking out to the reality,” Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 319-329.
32. Yin, Z., Shi, H., Cao, X. (2010). ”Numerical Simulation of Water and Air Flow in Oscillating Water Column Air Chamber,” Proceedings of The Twentieth (2010) International Offshore and Polar Engineering Conference, pp. 796-801.
33. 交通技術標準規範港灣類工程設計部(1996),港灣構造物設計基準-防波堤設計基準及說明,幼獅文化事業公司。
34. 交通部港灣技術研究中心(2002),五大港區三維查詢系統建置研究(一),出版機關:交通部運輸研究所。
35. 交通部港灣技術研究中心(2011),2010年港灣海氣地象觀測資料年報(波浪部分)(下冊),出版機關:交通部運輸研究所。
36. 李允武(2008),海洋能源開發,海洋出版社。
37. 林繼謙(2009),「岸基振盪水柱式波浪發電系統之設計」,國立成功大學系統及船舶機電工程學系碩士論文。
38. 徐泊樺,顏志偉(2007) 「淺談我國海洋能源開發之前景」,物理雙月刊(廿九卷三期),第718-726頁。
39. 郭金棟(1995),海岸工程(第二版),中國土木水利工程學會。
40. 郭一羽(2003),海洋工程學,文山書局。
41. 黃正欣,李兆鑫(1996)「深水防波堤不規則波波壓公式之探討」,中華民國第十八屆海洋工程研討會論文集。
42. 許泰文(2003),近岸水動力學,中國土木水利工程學會。
43. 經濟部能源局(2011),能源局100年報,經濟部能源局。