簡易檢索 / 詳目顯示

研究生: 江尉萍
Chiang, Wei-Ping
論文名稱: 高爐凝析石墨富集與純化之研究
Study on the concentration and purification of kish graphite from blast furnace
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 156
中文關鍵詞: 高爐副產物凝析石墨泡沫浮選化學純化
外文關鍵詞: blast furnace by-products, kish graphite, froth flotation, chemical purification
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高爐集塵灰以及脫硫渣礦物細料,係為鋼鐵產業之副產物,因含有高溫鐵水所析出之凝析石墨,故若能將凝析石墨從副產物之中有效富集回收,不但能使該類副產物後續資源化過程更不受限,亦能從中獲取高純度之石墨,提升資源循環之價值。本研究首先篩選出凝析石墨富集潛能最高之原料,而後利用石墨所具天然疏水性,以泡沫浮選作為初步富集凝析石墨之方法,並尋求其最佳物理操作以及加藥條件。此外,再以化學純化程序,探討酸純化凝析石墨之最適條件,並檢討不同純化流程對凝析石墨純化之影響,最後依純化後石墨含量及粒徑大小,評估高爐凝析石墨回收程序之可創造之價值。
    本研究首先開發高爐凝析石墨定量技術,以更精確瞭解樣品之石墨含量,而後材料基本特性分析結果顯示,Dust 2含有約34 wt.%之石墨,為材料中最高者,故應具回收凝析石墨潛力,而Ca、Fe為主要雜質。凝析石墨泡沫浮選時,過高之礦漿濃度對於精礦中石墨含量以及回收率皆有負面影響。適當起泡劑能夠有效穩定泡沫層,但過多的起泡劑易造成夾帶機制發生,導致富含雜質之細小顆粒於泡沫浮選過程一併被夾帶至精礦,進而降低精礦之石墨含量;捕收劑能夠加強礦物表面之疏水特性,但添加量過高易影響泡沫穩定性,因此藥劑添加種類以及搭配劑量為影響浮選效果之關鍵因素。本研究在礦漿濃度10 %、攪拌轉速1200 rpm、攪拌時間3 min、浮選時間10 min,搭配加藥條件為MIBC 5 g/t、煤油1000 g/t之泡沫浮選條件下,能夠將精礦石墨含量由原34 wt.%提升至51 wt.%且回收率達98.36 %。以此條件經三段浮選後最終精礦石墨含量可達到約84 wt.%,此時精礦中主要剩餘雜質組成為Fe、Ca、Al及Si。
    在凝析石墨之酸純化過程中,純化效果依序為HCl > HBF4 > HNO3 > H2SO4。於常溫下,較高HCl濃度有較佳之純化效果,當使用較高的酸濃度時,反應時間加長對石墨含量提升較為顯著;而當酸濃度越低時,提高液固比對純化效果之提升幅度越明顯。以HCl與HBF4形成混合酸溶液對提升凝析石墨純化效果並不十分顯著,但其Si去除效果隨HBF4比例提高而增加,Fe溶出部分亦有些微上升,顯示HBF4能夠有效提升Si及Fe之去除效果。
    於反應條件為1.0 N HCl、L/S=10 L/kg、反應時間30 min下,使用平板加熱輔助酸純化時,石墨含量大致隨溫度提升而增加,約於80℃時可獲得石墨含量最高達到為97.06 wt.%。微波加熱輔助能於相對低溫下(40℃)完成反應,但石墨含量略低於平板加熱。超音波輔助酸純化之主要優勢為可降低反應時間,於條件1.0 N HCl、L/S=10 L/kg之下反應僅需2 mi即可得到與常溫下攪拌30 min之相近結果。
    綜合而言,本研究透過泡沫浮選搭配酸純化之技術,可有效將高爐副產物中凝析石墨由約34 wt.%進行富集與純化後提升至~97 wt.%,除了能夠降低副產物後續資源化應用之限制,純化後之凝析石墨亦具有廣泛應用性及相當的價值。根據石墨之含量以及尺寸,本研究評估高爐集塵灰(Dust 2)之凝析石墨於三段浮選及不同化學純化方式之下,所得凝析石墨價值約可達到投入藥劑成本的4.7~6.8倍,應具工程應用性與經濟效益。

    Blast furnace dust and slag are by-products of the steel industry. During the steelmaking process, kish graphite is created through precipitation from molten iron at high temperatures. In this study, based on the analysis of the basic characteristics of the material, it is found that Dust 2 contained about 34 wt.% of kish graphite, which is the highest among the materials. When the kish graphite is concentrated by froth flotation, the excessive pulp density has a negative impact on the graphite concentration and recovery in the concentrates. A suitable frother (methyl isobutyl carbinol (MIBC)) can effectively stabilize the froth layer, and the collector (kerosene) can impart enough hydrophobicity to the mineral surface. Using the froth flotation operating at pulp density = 10 %, rotary speed = 1200 rpm, flotation time = 10 min, MIBC = 5 g/t, and kerosene = 1000 g/t, the kish graphite concentration in Dust 2 increased from 33.90 wt.%. to 51.00 wt.%. After the three stages flotation, the concentrate containing 84.09 wt.% of graphite can be obtained. In the chemical purification of the kish graphite, the effect of four kinds of acid solutions on the graphite is HCl > HBF4 > HNO3 > H2SO4. When using 1.0 N HCl, L/S=10 L/kg, reaction time 30 min, and the heating temperature = 80℃, the final graphite concentration of the product can reach 97.06 wt.%. According to the concentration and size, the benefit of graphite product after acid leaching assisted with heating at 80℃ is 295.6 USD per ton of Dust 2.

    中文摘要 I 英文摘要 III 誌 謝 IX 目 錄 XI 表目錄(List of Tables) XIV 圖目錄(List og Figures)XVI 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 4 2-1 脫硫渣與高爐集塵灰之特性與資源化現況 4 2-1-1 脫硫渣與高爐集塵灰之來源與特性 4 2-1-2 凝析石墨形成機制 7 2-1-3 脫硫渣與高爐集塵灰之再利用現況 10 2-2 石墨種類、特性與高值化發展 12 2-2-1 石墨種類及特性 14 2-2-2 石墨應用與高值化發展現況 16 2-3 礦物分選方法及原理 19 2-3-1 礦物分選技術 19 2-3-2 泡沫浮選原理及應用於石墨之富集 23 2-3-3 影響泡沫浮選之因子 25 2-4 石墨純化原理及技術 34 2-4-1 石墨純化方法之概述 34 2-4-2 化學純化石墨之技術 35 2-4-3 雜質種類、特性及去除方法 39 2-5 小結 40 第三章 研究材料、設備與方法 42 3-1 研究架構與實驗流程 42 3-2 研究材料與設備 45 3-2-1 樣品前處理 45 3-2-2 實驗試藥與儀器設備 45 3-3 研究分析與方法 47 3-3-1 泡沫浮選操作條件探討 47 3-3-2 礦漿製備與泡沫浮選實驗程序 47 3-3-3 凝析石墨化學純化程序 48 3-3-4 以物理程序輔助酸純化凝析石墨 49 3-3-5 分析方法 50 3-3-6 凝析石墨分選效率之判斷及計算 54 第四章 結果與討論 55 4-1 高爐副產物之基本特性 55 4-1-1 高爐凝析石墨定量技術 55 4-1-2 高爐副產物之物理特性 57 4-1-3 高爐副產物之化學特性 60 4-1-4 小結 72 4-2 浮選富集凝析石墨之探討 73 4-2-1 礦漿濃度與轉速對凝析石墨富集之影響 73 4-2-2 藥劑種類及配比對富集凝析石墨之影響 81 4-2-3 多段浮選富集凝析石墨與金屬元素分布之探討 88 4-2-4 小結 110 4-3 化學純化凝析石墨之探討 112 4-3-1 酸純化條件對凝析石墨純化之影響 112 4-3-2 以物理方法輔助酸純化凝析石墨之探討 120 4-3-3 小結 134 4-4 凝析石墨回收綜合評析 136 4-4-1 凝析石墨回收程序 136 4-4-2 凝析石墨回收經濟效益評估 138 4-4-3 小結 146 第五章 結論與建議 147 5-1 結論 147 5-2 建議 150 參考文獻 151

    Akdemir, Ü., & Sönmez, Investigation of coal and ash recovery and entrainment in flotation, Fuel Processing Technology, Vol. 82, NO. 1, pp. 1–9, 2003.

    An, J. C., Kim, H. J., & Hong, I., Preparation of kish graphite-based graphene nanoplatelets by GIC (graphite intercalation compound) via process, Journal of Industrial and Engineering Chemistry, Vol. 26, pp. 55–60, 2015.

    Aslan, N., Cifci, F., &Yan, D., Optimization of process parameters for producing graphite concentrate using response surface methodology. Separation and Purification Technology, Vol. 59, NO. 1, pp. 9–16, 2008.

    Balaban, A. T., Carbon and its nets, Computers and Mathematics with Applications, Vol. 17, NO. 1–3, pp. 397–416, 1989.

    Bourelle, E., Kaburagi, Y., Hishiyama, Y., & Inagaki, M., STM study of surfaces of kish graphite doped by iron, Carbon, Vol. 39, NO. 13, pp. 1955–1962, 2001.

    Bu, X., Xie, G., Peng, Y., Ge, L., & Ni, C., Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochemical Problems of Mineral Processing, Vol. 53, NO. 1, pp. 342–365, 2017.

    Derjaguin, B.V., & Dukhin, S. S., Theory of flotation of small and medium-size particles, Progress in Surface Science, Vol. 43, NO. 1–4, pp. 241–266, 1961.

    Donohue, J., The Structures of the Elements, Wiley, New York, 1974.

    Eskanlou, A., Khalesi, M. R., Abdollahy, M., & Chegeni, M. H., Interactional effects of bubble size, particle size and collector dosage on bubble loading in column flotation, Journal of Mining and Environment, Vol. 9, NO. 1, pp. 107–116, 2017.

    European Commission., Communication from the commission to EU parliament on the 2017 list of Critical Raw Materials for EU, 2017.

    Gaudin, A. M., Schuhmann, R., & Schlecten, A. W., Flotation kinetics. II. The effect of size on the behaviour of galena particles, The Journal of Physical Chemistry,Vol. 46, NO. 8, pp. 902–910, 1942.

    Hadler, K., & Cilliers, J. J., The relationship between the peak in air recovery and flotation bank performance, Minerals Engineering, Vol. 22, NO. 5, pp. 451–455, 2009.

    Hadler, K., Smith, C. D., & Cilliers, J. J., Recovery vs. mass pull: The link to air recovery, Minerals Engineering, Vol. 23, NO. 11–13, pp. 994–1002, 2010.

    Jun, C., Fan-fei, M., & Hui, W., A review: research status and progress on hydrophobic aggregation of the fine particles mineral, Acta Mineralogica Sinica,Vol. 34, NO. 2, pp. 181–188, 2014.

    Kazmi, K. raza., Kish beneficiation by flotation, Journal of The Chemical Society of Pakistan, Vol. 30, NO. 1, 2008.

    Koh, P. T. L., & Smith, L. K., The effect of stirring speed and induction time on flotation, Minerals Engineering, Vol. 24, NO. 5, pp. 442–448, 2011.

    Lange, A. G., Skinner, W. M., & Smart, R. S. C., Fine: Coarse particle interactions and aggregation in sphalerite flotation, Minerals Engineering, Vol. 10, NO. 7, pp. 681–693, 1997.

    Liu, D., Evans, G., & He, Q., Critical fall height for particle capture in film flotation: Importance of three phase contact line velocity and dynamic contact angle, Chemical Engineering Research and Design, Vol. 114, pp. 52–59, 2016.

    Liu, S., & Loper, C. R., Kish, a source of crystalline graphite, Carbon, Vol. 29, NO. 8, pp. 1119–1124, 1991.

    Öney, Ö., & Samanli, S., Determination of optimal flotation conditions of low-grade graphite ore, in: E3S Web of Conferences, Poland, Vol. 8, 2016.

    Pierson, H. O., Handbook of carbon, graphite, diamond and fullerenes - properties, processing and applications, Handbook of Carbon, Graphite, Diamond and Fullerenes, William Andrew, pp. 43-68, 1993.

    Rahman, R. M., Ata, S., & Jameson, G. J., The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp, International Journal of Mineral Processing, Vol. 106–109, pp. 70–77, 2012.

    Shahbazi, B., Rezai, B., Koleini, S. M. J., & Noparast, M., The effect of bubble surface area flux on flotation efficiency of pyrite particles, Iran. J. Chem. Chem, Vol. 32, NO. 2, pp. 109–118, 2013.

    Sun, K., Qiu, Y., & Zhang, L., Preserving flake size in an african flake graphite ore beneficiation using a modified grinding and pre-screening process, Minerals, Vol. 7, NO. 7, pp. 115, 2017.

    Sung, J. C., Hu, S. C., Hsu, K. H., Chang, K. L., Kan, M. C., Lin, I. C., & Wu, T. Y., Large area graphene formed by the catalytic exfoliation of natural graphite, Vol. 9, pp. 167–170, 2009.

    Syarifuddin, F., Florena, F. F., Hanam, E. S., Trisko, N., Kustiyanto, E., & Arinton, G., Effect of acid leaching on upgrading the graphite concentrate from West Kalimantan (Indonesia), in: AIP Conference Proceedings, Jatinangor, Indonesia, Vol. 1712, NO. 1, 2016.

    Uysal, S., Graphite: A critical raw material and turkey, Mining Turkey, Vol. 2, NO. 3, pp. 42–47, 2012.

    Wang, L., Peng, Y., & Runge, K., The mechanism responsible for the effect of frothers on the degree of entrainment in laboratory batch flotation, Minerals Engineering, Vol. 100, pp. 124–131, 2017.

    Xiao, J., Yuan, J., Tian, Z., Yang, K., Yao, Z., Yu, B., & Zhang, L., Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis, Ultrasonics Sonochemistry, Vol. 40, pp. 21–29, 2018.

    Yuan, J., Xiao, J., Li, F., Wang, B., Yao, Z., Yu, B., & Zhang, L., Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC. Ultrasonics Sonochemistry,Vol. 41, pp. 608–618, 2018.

    Yuan, L., Guo-wang, Z., Zi-qiang, L. I., & Xiao, X., Research progress of the protecting large flaky graphite, China Non-Metallic Mining Industry Herald, Vol. 102, pp. 2–5, 2013.

    Yuan, Y., & Lee, T. R., Contact angle and wetting properties, Surface Science Techniques, Berlin, New York, pp. 3-34, 2013.

    丁躍華、唐啟榮、楊曉源、王玉仁、楊武態,高爐鐵水碳溶解度與片狀石墨析出的實驗研究,昆明理工大學學報,第29卷,第5期,2004。

    王淀佐、林強、蔣玉仁,選礦與冶金藥劑分子設計,中南工業大學出版社,湖南,第233~248頁,1996。

    中國鋼鐵公司,中鋼企業社會責任報告書。

    任曉聰,石墨提純工藝的研究進展,廣州化工,第46卷,第3期,第11~12頁,2018。

    何珊,管柱實驗評估脫硫渣與轉爐石去除磷之研究,淡江大學,水資源及環境工程學系,碩士論文,2017。

    呂毅平,以超音波水浴結合酸萃取進行土壤重金屬移除,國立屏東科技大學,環境工程與科學系所,碩士論文,2010。

    李常清、韋永德,液相化學法製取高純石墨研究,非金屬礦,第25卷,第2期,2002。

    李文鐘,選礦學,國立編譯館,第42~146頁,1989。

    李玉峰、賴奇、魏亞林、劉志躍,細鱗片石墨的提純研究,化學工程師,第142卷,第7期,2007。

    吳怡葶,鹼活化脫硫渣產製發泡砂漿板之性能與環境特性,國立高雄應用科技大學,土木工程與防災科技研究所,碩士論文,2018。

    翁明偉,脫硫渣與水淬爐石資源化於無水泥CLSM可行性之研究,國立高雄應用科技大學,土木工程與防災科技研究所,碩士論文,2007。

    張俊鴻,脫硫爐石粒料於 CLSM 應用探討,營建知訊,第432期,2019。

    張然、余麗秀,高純石墨製備及應用研究進展,中國非金屬礦工業導刊,第54期,第2~5頁,2006。

    粘美雪,金屬氯化物-石墨層間化合物製備與性質之研究,北台學報,第29期,2006。

    莊鎮宇,石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,物理雙月刊,第33卷,第2期,第155~162頁,2011。

    陳俊廷,含石墨亮片物質特性分析及資源化之評估,國立屏東科技大學,環境工程與科學系,碩士論文,2007。

    黃承鈞、黃淑娟,石墨烯材料發展與應用趨勢,工業材料雜誌,第304期,第63~74頁。

    傅彥培,煉鋼脫硫渣資源化之基礎研究,國立成功大學,資源工程學系,碩士論文,1995。

    葛鵬、王化軍、解琳、趙晶、張強,石墨提純方法進展,金屬礦山,第412期,第38~43頁,2010。

    鄭昀燕,重金屬污染土壤清洗試驗評估,國立中興大學,環境工程學系所,碩士論文,2015。

    盧壽慈,礦物顆粒分選工程,冶金工業,第81~84頁,1990。

    羅立群、譚旭升、田金星、舒偉、程琪林,鹼酸法提純天然石墨的純化過程與雜質演變特性,過程工程學報,第16卷,第6期,第979~984頁,2016。

    無法下載圖示 校內:2024-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE