簡易檢索 / 詳目顯示

研究生: 吳青翰
Wu, Ching-han
論文名稱: 緊急醫療救護系統資源配置之模擬研究-以台南市為例
A Simulation Study for EMS Resource Allocation: A Case Study of Tainan City
指導教授: 黃國平
Hwang, Kevin P.
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 97
中文關鍵詞: 系統模擬點型態群集分析利用率反應時間資源配置緊急醫療救護系統
外文關鍵詞: Utilization Ratio, Response Time, System Simulation, Resource Allocation, Point Pattern Clustering Analysis, Emergency Medical Service System
相關次數: 點閱:233下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   到院前救護之反應時間的長短影響患者之預後甚巨。然而在救護資源有限的情形下,如何妥善的分配資源數量及區位,以兼顧品質與成本效益,為規劃緊急醫療救護系統重要的課題。本研究針對緊急醫療救護系統資源配置問題,研擬各種救護車數量與區位配置之替選方案,以求系統之最佳化。
      為評估替選方案之績效,本研究以台南市緊急醫療救護系統為對象,分析其系統運作與各種時間、空間上的特性,利用Visual C++程式語言建構一模擬模式,作為實驗之平台;而後依據各時段之救護案件發生地點及不同方案之救護車數量組合,以點型態群集分析方法,計算其群集中心點,設定為救護車之駐點,進行模擬,並對模擬結果之反應時間及救護車利用率加以分析,以評估各種方案之績效。
      經替選方案之績效分析,整體反應時間以方案1表現最佳;而反應時間在可接受範圍內,則利用率以方案2最高;經兩項指標綜合評估,方案6之反應時間及利用率可達到平衡,故本研究認為方案6為最佳之方案。
      此外,當救護案件數量增加率達到現有數量的45 %~50 %時,現有救護資源將無法負荷,導致反應時間在8分鐘內的案件比例低於90 %,必須增加服勤之救護車數量,以維持系統品質。
      經由方案模擬及績效分析,證實依案件之空間分佈,重新配置救護車,確可改善系統之反應時間及利用率的表現。而目前之救護案件數量,現有之救護資源亦足以負荷,不宜再增加服勤之救護車數量,以避免資源的浪費。

      The duration of response time affects the patients’ prognosis significantly, and how to allocate the finite EMS resources appropriately to give consideration to both quality and cost-effectiveness is an important issue in planning EMSS. The research focused on EMS resource allocation drafted alternatives to various ambulance number and locations for systematic optimization.
      In order to evaluate the performance of alternatives, this research established an EMS computer simulation model using Visual C++ language as experiment platform. Using data from Tainan City EMSS prehospital care records, the study analyzed characteristics of systematic operations, call arrival time and spatial distribution for model input. According to case locations of every period and ambulance number of alternatives, the study relocated ambulances at the centroid of clusters computing by point pattern clustering analysis. And then the research evaluated alternative effectiveness with the simulating output in response time and utilization ratio.
      Based on effectiveness analysis, alternative 1 was best in whole performance of response time, and alternative 2 had the highest utilization ratio within the acceptable response time level. In accordance with evaluation of both sides, alternative 6 could balance the performance of response time and utilization ratio, so the study took it as the optimal one.
    In addition, when the increase rate of calls reaches 45 to 50 % of the present that will be over the load of present EMS resources, and the proportion of cases whose response time within 8 minutes will be less than 90 %. The number of ambulances on duty must be added in order to maintain systematic quality.
      After simulation of alternatives and analysis of effectiveness, it verified that redeploying ambulances depending on spatial distribution of cases can really improve the systematic performance of response time and utilization ratio. As for the present call number, EMS resources now are enough to deal with so that those should not increase in order to avoid the waste.

    目錄 III 表目錄 V 圖目錄 VII 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究目的 3 1.3 研究範圍 3 1.4 研究流程 4 第二章 文獻回顧 7 2.1 緊急醫療救護系統 7 2.1.1 系統架構 7 2.1.2 救護技術員 8 2.1.3 緊急救護出勤流程 10 2.1.4 雙軌緊急醫療救護系統 11 2.2 緊急醫療救護系統績效指標 11 2.3 資源配置文獻 13 2.3.1 資源配置理論 14 2.3.2 緊急醫療救護系統資源配置 14 2.3.3 研究方法比較 17 2.4 系統模擬方法 18 2.4.1 模擬系統之更新方式 19 2.4.2 變異數降低技術 20 2.5 事故發生預測模式 20 2.6 點型態之群集分析 22 第三章 研究方法 25 3.1 研究對象 25 3.1.1 系統架構 25 3.1.2 人力資源 26 3.2 研究材料 28 3.3 研究架構 28 3.4 研究方法 29 3.4.1 案件地點定位 29 3.4.2 救護案件特性分析 31 3.4.3 模擬模式 31 3.4.4 替選方案研擬 32 3.4.5 救護資源之最大負荷量 32 第四章 救護案件特性分析 33 4.1 救護案件發生時間 33 4.1.1 資料分群 33 4.1.2 案件發生時間間距檢定 39 4.2 救護案件區位分析 41 4.2.1 救護案件集中區域 41 4.2.2 最近鄰接分層空間群集模式 44 4.2.3 案件集中區域分析 45 4.2.4 旅行距離之校估 48 4.3 救護車旅行速率 53 4.3.1 歐氏距離與實際路網距離 53 4.3.2 三階段路程之行車速率特性 53 4.4 救護案件類型 60 4.5 救護現場時間 62 4.6 後送醫院 65 4.7 在醫院時間 67 第五章 模擬模式構建及替選方案績效分析 69 5.1 模式構建及變數說明 69 5.1.1 程式架構 69 5.1.2 變數及函式說明 70 5.2 模擬程式 71 5.3 模式驗證 73 5.3.1 救護案件數量 73 5.3.2 案件發生地點 75 5.3.3 救護反應時間 76 5.4 替選方案研擬 77 5.4.1 緊急醫療救護系統資源配置對策 77 5.4.2 系統現狀分析 78 5.4.3 實驗設計 79 5.4.4 替選方案模擬與績效分析 80 5.5 現有救護資源之最大負荷量分析 90 5.6 小結 93 第六章 結論與建議 95 6.1 結論 95 6.2 建議 96 參考文獻 i 附錄 App-1 A. 救護案件集中區域中心點座標、件數及機率 App-1 B. 各方案之救護車駐點座標 App-16

    朱子豪、陳致元(民國89年)。單一物流中心車輛途程問題求解模式之空間分析。中華地理資訊學會2000年學術研討會論文集。
    胡勝川(民國81年)。車禍與意外死亡-漸受重視的疾病。台灣醫界,第35卷,第3期,255-258頁。
    胡勝川(民國83年)。實施醫佐員制度之可行性研究。行政院衛生署科技發展研究計劃成果報告(編號:DOH83-TD-063),未出版。
    胡勝川等譯(民國85年)。Hafen, B. Q. & Karren, K. J.著。到院前緊急救護。台北市:金名。
    胡勝川、高偉峰、陳啟華、顏鴻章(民國91年)。ACLS精華。台北市:金名。
    消防法(民國94年修正)。
    戚培芳(民國86年)。中山高速公路肇事分析模式之研究。國立交通大學交通運輸研究所碩士論文,未出版,新竹市。
    馬惠明(民國91年)。台北緊急醫療救護系統對到院前心跳停止病患之救護成效及成本效益之評估。台北市政府消防局委託研究計劃(編號:Temp200106066533),未出版。
    馬惠明、顏瑞昇、柯昭穎、張玉業(民國94年)。到院前高級救護服務與機車救護對於重症傷病患的醫療品質與效益評估(II)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC93-2320-B-002-080)
    陳順宇(民國87年)。統計學,台北市:華泰。
    陳映達(民國91年)。高級到院前救護制度之評估研究-救護技術員與急診醫護人員出勤模式之成效差異。國立台灣大學醫療機構管理研究所碩士論文,未出版,台北市。
    陳順宇(民國93年)。多變量分析。台北市:華泰。
    救護技術員管理要點(民國93年修正)。
    曾國雄、鄧振源、楊進財、王日昌(民國83年)。從交通安全觀點論高速公路空中緊急救護服務設施區位之決定。中華民國第一屆運輸安全研討會,268-277頁。
    黃國平、張嫺茹、吳青翰(民國93年)。都市行車事故發生時間機率研究。第一屆台灣作業研究學會學術研討會論文集,719-725頁。
    廖慶榮(民國92年)。作業研究。台北市:三民。
    歐陽餘慶、林國顯、林豐博、曾平毅、蘇振維、張瓊文等人(民國90年)。2001年台灣地區公路容量手冊。台北市:交通部運輸研究所。
    緊急醫療救護法(民國94年修正)。
    謝興盛(民國92年)。捷運列車延誤時班距調整模式之模擬分析-以台北捷運中、高運量系統為例。國立成功大學交通管理科學研究所博士論文,未出版,台南市。
    蘇喜、石崇良、陳麗華(民國89年)。運用模擬技術建立緊急救護模式及效益評估。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 89-2314-B-002-383),未出版。
    蘇喜、石崇良、陳麗華(民國91年)。創傷病患之到院前緊急救護模式模擬及成本效益分析。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 90-2320-B-002-196),未出版。
    Abdel-Aty, M. A. & Radwan, A. E. (2000). Modeling traffic accident occurrence and involvement. Accident Analysis and Prevention, Vol. 32, Issue. 5, pp. 633-642.
    Al-Ghamdi, A. S. (2002). Emergency Medical Service Rescue Times in Riyadh. Accident Analysis and Prevention, Vol. 34, Issue. 4, pp. 499-505.
    Anonymous (1992). Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Part I. Introduction. The Journal of the American Medical Association, Vol.268, No. 16, pp. 2171-2183.
    Beraldi, P., Bruni, M. E., & Conforti, D. (2004). Designing Robust Emergency Medical Service via Stochastic Programming. European Journal of Operational Research, Vol. 158, Issue 1, pp. 183-193.
    Bissell, R. A., Eslinger, D. G., & Zimmerman, L. (1998). The Efficacy of Advanced Life Support: A Review of the Literature. Prehospital and Disaster Medicine, Vol. 13, No. 1, pp. 69-79.
    Boots, B. N. & Getis, A. (1988). Point Pattern Analysis, Newbury Park, CA: SAGE Publications.
    Bowerman, R. L., Calamai, P. H., & Hall, G. B. (1999). The Demand Partitioning Method for Reducing Aggregation Errors in p-Median Problems. Computers and Operations Research, Vol. 26, No. 10, pp. 1097-1111.
    Brismar, B., Dahlgren, B. E., & Larsson, J. (1984). Ambulance utilization in Sweden: Analysis of Emergency Ambulance Missions in Urban and Rural Area. Annals of Emergency Medicine, Vol. 13, Issue 11, pp. 1037-1039.
    Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance Location and Relocation Models. European Journal of Operational Research, Vol. 147, Issue 3, pp. 451-463.
    Carvalho, T. A. & Powell, W. B. (2000). A Multiplier Adjustment Method for Dynamic Resource Allocation Problems. Transportation Science, Vol. 34, No. 2, pp. 150-164.
    Church, R., Sorensen, P., & Corrigan, W. (2001). Manpower Deployment in Emergency Services. Fire Technology, Vol. 37, pp. 219-234.
    Cummins, R. O. (1989). From concept to standard-of-care? Review of the clinical experience with automated external defibrillators. Annals of Emergency Medicine, Vol. 18, Issue 12, pp. 1269-1275.
    Daskin, M. S. (1983). A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution. Transportation Science, Vol. 17, No. 1, pp. 48-70.
    David, H. A. & Gunnink, J. L. (1997). The Paired t Test under Artificial Pairing. The American Statistician, Vol. 51, No. 1, pp. 9-12.
    De Maio, V. J., Stiell, I. G., Wells, G. A., & Spaite, D. W. (2003). Optimal Defibrillation Response Intervals for Maximum Out-of-Hospital Cardiac Arrest Survival Rates. Annals of Emergency Medicine, Vol. 42, Issue 2, pp. 242-250.
    Dissanayake, S., Lu, J. J., & Chu, X. (1999). Simplified Approach To Forecast Highway Crash Rates of Selected Special Population Subsets. Transportation Research Record 1665, pp. 44-50.
    Drezner, Z. (Ed.). (1995). Facility Location: A Survey of Applications and Methods. New York: Springer-Verlag.
    Eisenberg, M. S., Bergner, L., & Hallstrom, A. (1978). A Cardiac Resuscitation in the Community: Importance of Rapid Provision and Implications for Program Planning. The Journal of the American Medical Association, Vol. 241, No. 18, pp. 1905-1907.
    Erkut, E. & Bozkaya, B. (1999). Analysis of Aggregation Errors for the p-Median Problem. Computer and Operations Research, Vol. 26, No. 10, pp. 1075-1096.
    Fischer, M., Krep, H., Wierich, D., Heister, U., Hoeft, A., Edwards, S., et al. (2003). Comparison of the Emergency Medical Service Systems of Birmingham and Bonn: Process Efficacy and Cost Effectiveness. Anasthesiol Intensivmed Notfallmed Schmerzther, Vol. 38, Issue 10, pp. 630-642.
    Fitzsimmons, J. A. (1973). A Methodology for Emergency Ambulance Deployment. Management Science, Vol. 19, No. 6, pp. 627-636.
    Francis, R. L., Lowe, T. J., & Tamir, A. (2000). Aggregation Error Bounds for a Class of Location Models. Operations Research, Vol. 48, No. 2, pp. 294-307.
    Gendreau, M., Laporte, G. & Semet, F. (2001). A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Computing, Vol. 27, pp. 1641-1653.
    Goldberg, J. B. (2004). Operations Research Models for the Deployment of Emergency Service Vehicles. EMS Management Journal, Vol. 1, No. 1, pp. 20-39.
    Greibe, P. (2003). Accident Prediction Models for Urban Roads. Accident Analysis and Prevention, Vol. 35, Issue 2, pp. 273-285.
    Harewood, S. (2002). Emergency Ambulance Deployment in Barbados: a Multi-Objective Approach. Journal of the Operational Research Society, Vol. 53, No. 2, pp. 185-192.
    Hsieh, S. J. (2002). Hybrid Analytic and Simulation Models for Assembly Line Design and Production Planning. Simulation Modelling Practice and Theory, Vol. 10, Issue 2, pp.87-108.
    Ingolfsson, A., Erkut, E., & Budge, S. (2003). Simulation of Single Start Station for Edmonton EMS. Journal of the Operational Research Society, Vol. 54, No. 7, pp. 736-746.
    Iskander, W. H. (1989). Simulation Modeling for Emergency Medical Service Systems. Proceedings of the 1989 Winter Simulation Conference, pp. 1107-1111.
    Jun, J. B., Jacobson, S. H., & Swisher, J. R. (1999). Application of Discrete-Event Simulation in Health Care Clinics: A Survey. Journal of the Operational Research Society, Vol. 50, No. 2, pp. 109-123.
    Karlaftis, M. G. & Tarko, A. P. (1998). Heterojeneity Consideration in Accident Modeling. Accident Analysis and Prevention, Vol. 30, Issue 4, pp. 425-433.
    Kelton, W. D., Sadowski, R. P., & Sturrock, D. T. (2003). Simulation with Arena (3rd ed.). Singapore: Mc Graw Hill.
    Lam, F. C. & Longnecker, M. T. (1983). A Modified Wilicoxon Rank Sum Test for Paired Data. Biometrika, Vol. 70, No. 2, pp. 510-513.
    Law, A. M. & Kelton, W. D. (2000). Simulation Modeling and Analysis (3rd ed.), Singapore, Mc Graw Hill.
    Leung, L. P., Wong, T. W., & Tong, H. K. (2001). Out-of-Hospital Cardiac Arrest in Hong Kong. Prehospital Emergency Care, Vol. 5, Issue 3, pp. 308-311.
    Levine, N. (2004). CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations. Houston, TX: Ned Levine & Associates, and Washington, DC: the National Institute of Justice.
    Mandell, M. B. (1998). Covering Models for Two-Tiered Emergency Medical Services System. Location science, Vol. 6, pp. 355-368.
    Maryland Institute for Emergency Medical Services Systems (2004). 2003-2004 Annual Report. Baltimore, Maryland: Maryland Institute for Emergency Medical Services Systems.
    Matsumoto, M. & Nishimura, K. (1998). Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30.
    Mendonça, F. C. & Morabito, R. (2001). Analysing Emergency Medical Service Ambulance Deployment on a Brazilian Highway Using the Hypercube Model. Journal of the Operational Research Society, Vol. 52, No. 3, pp. 261-270.
    Mountain, L., Fawaz, B., & Jarrett, D. (1996). Accident Prediction Models For Roads With Minor Junctions. Accident Analysis and Prevention, Vol. 28, Issue 6, pp. 695-707.
    Nichol, G., Detsky, A. S., Stiell, I. G., O’Rourke, K., Wells, G., & Laupacis, A. (1996). Effectiveness of Emergency Medical Services for Victims of Out-of-Hospital Cardiac Arrest: A Metaanalysis. Annals of Emergency Medicine, Vol. 27, Issue 6, pp. 700-710.
    Owen, S. H. & Daskin, M. S. (1998). Strategic Facility Location: A Review. European Journal of Operational Research, Vol. 111, Issue 3, pp. 423-447.
    Peleg, K. & Pliskin, J. S. (2004). A Geographic Information System Simulation Model of EMS: Reducing Ambulance Response Time. American Journal of Emergency Medicine, Vol. 22, No. 3, pp. 164-170.
    Pons, P. T., Hsukoos, J. S., Bludworth, W., Crebely, T., Pons, K. A., & Markovchick, V. J. (2005). Paramedic Response Time: Does It Affect Patient Survival? Academic Emergency Medicine, Vol. 12, No. 7, pp. 594-600.
    Ratliff, H. D. & Zhang, X. (1999). ESTIMATING TRAVELING TIME/SPEED. Journal of Business Logistics, Vol. 20, No. 2, pp. 121-139.
    ReVelle, C. S. & Eiselt, H. A. (2005). Location analysis: A synthesis and survey. European Journal of Operational Research, Vol. 165, Issue 1, pp. 1-19.
    Sadoun, B. (2000). Applied System Simulation: a Review Study. Information Sciences, Vol. 124, pp. 173-192.
    Sainfort, F., Brandeau, M. L., & Pierskalla, W. P. (Eds.). (2004). Handbook of Operations Research and Health Care: Methods and Applications. Norwell, MA: Kluwer Academic Publishers
    Sayre, M. R., White, L. J., Brown, L. H., Armacost, M., Dean, J. M., Frame, S. B., et. al. (2001). National EMS Research Agenda, (DTN 22-99-H-05100).
    Schellenger, D. (2002, March). The History of EMS. Medical Education Update, Vol. 5, Issue 3, pp. 1-4.
    Schneider, R. J., Khattak, A. J., & Zegeer, C. V. (2001). Method of Improving Pedestrian Safety Proactively with Geographic Information Systems-Example from a College Campus. Transportation Research Record 1773, Paper No. 01-0504, pp. 97-107.
    Schneider, R. J., Ryznar, R. M., & Khattak, A. J. (2004). An Accident Waiting to Happen: a Spatial Approach to Proactive Pedestrian Planning. Accident Analysis and Prevention, Vol. 36, Issue 2, pp. 193-211.
    Silka, P. A., Geiderman, J. M., & Kim, J. Y. (2001). Diversion of ALS Ambulance: Characteristics, Causes, and Effect in a Large Urban System. Prehospital Emergency Care, Vol. 5, No. 1, pp. 23-28.
    Sohn, S, Y. (1999). Quality Function Deployment Applied to Local Traffic Accident Reduction. Accident Analysis and Prevention, Vol. 31, Issue 6, pp. 751-761.
    Spaite, D. W., Valenzuela, T. D., Meislin, H. W., Criss, F. A., & Hinsberg, P. (1993). Prospective Validation of a New Model for Evaluating Emergency Medical Services Systems by In-Field Observation of Specific Time Intervals in Prehospital Care. Annals of Emergency Medicine, Vol. 22, Issue 4, pp. 638-645.
    Stout, J., Pepe, P. E., & Mesesso, V. N. (2000). All-Advanced Life Support vs. Tiered-Response Ambulance System. Prehospital Emergency Care, Vol. 4, No. 1, pp. 1-6.
    Su, S. & Shih, C. L. (2002). Resource Reallocation in an Emergency Medical Service System Using Computer Simulation. American Journal of Emergency Medicine, Vol. 20, No. 7, pp. 627-634.
    Su, S. & Shih, C. L. (2003). Modeling an Emergency Medical Services System Using Computer Simulation. International Journal of Medical Informatics, Vol. 72, pp. 57-72.
    Wears, R. L. & Winton, C. N. (1993). Simulation Modeling of Prehospital Trauma Care. Proceedings of the 1993 Winter Simulation Conference, pp. 1216-1224.
    White, R. D., Asplin, B. R., Bugliosi, T. F., & Hankins, D. G. (1996). High Discharge Survival after Out-of-Hospital Ventricular Fibrillation with Rapid Defibrillation by Police and Paramedics. Annals of Emergency Medicine, Vol. 28, Issue 5, pp. 480-485.
    White, R. D., Hankins, D. G., & Bugliosi, T. F. (1998). Seven Years’ Experience with Early Defibrillation by Police and Paramedics in An Emergency Medical Services System. Resuscitation, Vol. 39, Issue 3, pp. 145-151.
    White, R. D., Bunch, T. J., & Hankins, D. G. (2005). Evolution of a Community-Wide Early Defibrillation Programme Experience over 13 Year Using Police/Fire Personnel and Paramedics as Responders. Resuscitation, Vol. 65, Issue 3, pp. 279-283.
    Ulrich, J. & Miller, J. (1993). Information Processing Models Generating Lognormally Distributed Reaction Times. Journal of Mathematical Psychology, Vol. 37, pp. 513-525.
    Van Breukelen, G. J. P. (1995). Theoretical Note: Parallel Information Processing Models Compatible with Lognormally Distributed Response Times. Journal of Mathematical Psychology, Vol. 39, pp. 396-399.
    You, J. & Kim, T. J. (2000). Development and evaluation of a hybrid travel time forecasting model. Transportation Research Part C, Vol. 8, pp. 231-256.
    Zhu, Z., Mcknew, M. A., & Lee, J. (1992). Effect of Time-Varied Arrival Rates: an Investigation in Emergency Ambulance Service Systems. Proceedings of the 1992 Winter Simulation Conference, pp. 1180-1186.

    下載圖示 校內:2011-07-10公開
    校外:2011-07-10公開
    QR CODE