簡易檢索 / 詳目顯示

研究生: 林良鴻
Lin, Liang-Hong
論文名稱: 寬工作電壓範圍及PFM控制的升-降壓單電感雙輸出電壓轉換器
Wide-Supply-Voltage-Range Buck-Boost Single-Inductor-Dual Output DC-DC Converter with PFM Control
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 82
中文關鍵詞: 單電感雙輸出電壓轉換器不連續導通模式脈波頻率調變控制
外文關鍵詞: Single-inductor dual-output (SIDO), Discontinuous conduction mode (DCM), Pulse frequency modulation (PFM)
相關次數: 點閱:105下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一寬輸入電壓範圍及脈波頻率調變(Pulse Frequency Modulation, PFM)控制的升-降壓單電感雙輸出電壓轉換器。為了能延長單次充電後的電池使用時間,本電壓轉換器採用了升-降壓架構來提升可攜式電子產品的連續使用時間;另外,本電路採用了全比較器回授控制技術,利用比較器取代運算放大器去偵測輸出電壓狀態,所以系統具有快速暫態響之優點,且無穩定性問題及不需要額外的迴路補償元件(電阻或電容),也因此可以減少晶片及印刷電路板(Printed circuit board, PCB)尺寸,進而讓成本降低且更適合於System on chip (SoC)應用。先前文獻所使用的脈波寬度調變(Pulse Width Modulation, PWM) 控制技術會有輕載效率不佳之問題,所以本電壓轉換器採用了脈波頻率調變控制技術來提升輕載時之效率,因此本電壓轉換器更適用於輕載應用,例如生醫感測電路;另外,本轉換器具有兩個不同的輸出電壓準位,可作為不同製程應用的電源來源,所以本電壓轉換器也適用於System in package (SiP)。
    本晶片使用台灣積體電路公司0.35-μm 2P4M 5V混合訊號製程,尺寸為2.3×1.9 mm2。此晶片的輸入電壓範圍為1.8 – 5 V,兩個輸出電壓分別為1.8 V及3.3 V,其最大輸出電流分別為40 mA及30 mA,負載調節率(Load regulation)分別為0.048 mV/mA 及0.132 mV/mA,而互穩壓調節率(Cross regulation)則分別為0.034 mV/mA及0.009 mV/mA。

    An integrated pulse-frequency-modulation (PFM) controlled buck-boost single-inductor dual-output (SIDO) DC-DC converter with wide supply voltage range is presented. The converter adopts the buck-boost power stage architecture to prolong the operation time of the portable devices. In addition, the all-comparator feedback control technique is used, which means that error amplifiers are replaced by comparators to detect the state of outputs. By using this technique, the converter can achieve fast transient response, and has no stability problem. Moreover, no external compensation components are needed. Therefore, the sizes of chip and its printed circuit board (PCB) can be reduced, the cost can be decreased, and, hence, it is suitable for system-on-chip (SoC) applications. Compared with converters using pulse width modulation (PWM) control, the proposed PFM–controlled converter achieves better efficiency at light load. Hence, this converter can be used for light-load applications (e.g., biomedical sensor chip). Moreover, there are two different output voltages in the proposed chip, and they can be used to power two chips manufactured with different processes or two sub-systems with different supply voltages. Thus, the converter is also suitable for system in package (SiP).
    The proposed converter chip was fabricated by TSMC 0.35-μm CMOS process, and the area of the chip is 2.3×1.9 mm2. The input voltage range of this converter is 1.8 – 5 V, its two output voltages are 1.8 V and 3.3 V, and their maximal output currents are 30 mA and 40 mA. The load-regulations of these two outputs are 0.048 mV/mA and 0.132 mV/mA, and the cross-regulations are 0.034 mV/mA and 0.009 mV/mA.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 3 Chapter 2 Fundamentals of Single-Inductor Multiple-Output Switching Converter 4 2.1 Single-Inductor Multiple-Output (SIMO) Power Stage 4 2.1.1 Buck Power Stage 4 2.1.2 Boost Power Stage 5 2.1.3 Inverting Buck-Boost Power Stage 5 2.1.4 Non-inverting Buck-Boost Power Stage 6 2.2 Control Method of Inductor Current 7 2.2.1 Time-Multiplexing Control 7 2.2.2 Power-Distributive Control 11 2.3 Design Issues of SIMO 14 2.3.1 Cross-Regulation (CR) 14 2.3.2 Power Conversion Efficiency 19 2.3.3 Transient Response 23 Chapter 3 Analysis and Design of Buck-Boost SIDO Converter 27 3.1 Power Stage 27 3.2 Energy Delivery Paths 27 3.3 Energy Delivery Method 28 3.4 Energy Delivery Analysis in DCM Region 30 3.4.1 Pulse Frequency Modulation Control 30 3.4.2 Maximum Output Power 31 3.5 Structure and Circuit Design 32 3.5.1 Bandgap Reference Voltage Circuit 33 3.5.2 PFM Control Circuit 35 3.5.3 Output Selector Circuit 36 3.5.4 Adaptive On-Time Circuit 38 3.5.5 Zero Current Detection 40 3.5.6 Comparator 42 3.5.7 Highest Voltage Selector 42 3.5.8 Anti-Ringing Circuit 43 3.5.9 Gate Driver & Dead-Time Logic 44 Chapter 4 Simulation Results and Layout Consideration 46 4.1 Simulation of Sub-circuits 46 4.1.1 Simulation of Zero Current Detection 46 4.1.2 Simulation of Gate Driver & Dead-Time Logic 47 4.2 Simulation Results of Whole System 48 4.2.1 Load Transient at The Input Voltage VIN = 1.8V 48 4.2.2 Load Transient at The Input Voltage VIN = 3.3V 52 4.2.3 Load Transient at The Input Voltage VIN = 5V 56 4.3 Layout 60 4.3.1 Bonding Wire Diagram 62 Chapter 5 Measurement Results 63 5.1 Measurement Environment 63 5.2 Measurement Results of Sub-Circuits 66 5.2.1 Measurement Results of Zero Current Detection 66 5.2.2 Measurement Results of Gate Driver & Dead-Time Logic 67 5.3 Measurement of Whole Converter 68 5.3.1 Load Transient at The Input Voltage VIN = 1.8V 68 5.3.2 Load Transient at The Input Voltage VIN = 3.3V 70 5.3.3 Load Transient at The Input Voltage VIN = 5V 72 5.3.4 Cross- and Load-Regulations 74 5.3.5 Line Regulation 75 5.3.6 Efficiency 76 5.4 Performance 77 Chapter 6 Conclusion and Future Work 79 6.1 Conclusion 79 6.2 Future Work 79 References 80

    [1] D. S. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89–100, Jan. 2003.
    [2] S. C. Koon, Y. H. Lam, and W. H. Ki, “Integrated charge-control single-inductor dual-output step-up/step-down converter,” in Proc. IEEE Int. Symp. on Circuits & Systems, Kobe, Japan, May 2005, pp. 3071–3074.
    [3] K. S. Seol, Y. J. Woo, G. H. Cho, G. H. Gho, and J. W. Lee, “A synchronous multioutput step-up/down DC–DC converter with return current control,” IEEE Trans. Circuits & Syst. II: Exp. Briefs, vol. 56, no. 3, pp. 210–214, Mar. 2009.
    [4] D. Kwon and G. A. Rincón-Mora, “Single-inductor-multiple-output switching DC-DC converters,” IEEE Trans. Circuits & Syst. II: Exp. Briefs, vol. 56, no. 8, pp. 614–618, Aug. 2009.
    [5] D. S. Ma, W. H. Ki, and C. Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007–1014, Jun. 2003.
    [6] H. P. Le, C. S. Chae, K. C. Lee, S. W. Wang, G. H. Cho, and G. H. Cho, “A single-inductor switching DC-DC converter with five outputs and ordered power-distributive control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2076–2714, Dec. 2007.
    [7] Y. C. Chan, “Design and Implementation of Integrated Single Inductor Dual-Outputs DC-DC Converter,” Master Thesis, National Cheng Kung University, Jul. 2010.
    [8] M. H. Huang and K. H. Chen, “Single-Inductor Dual Buck-Boost Output (SIDBBO) Converter with Adaptive Current Control Mode (ACCM) and Adaptive Body Switch (ABS) for Compact Size and Long Battery Life in Portable Device,” in Proc. IEEE Symp. VLSI Circuit, Jun. 2009, pp. 164–165.
    [9] C. Huang and P. K. T. Mok, “Cross-Regulation-Suppression Control Scheme for CCM Single-Inductor-Dual-Output Buck Converter with Ordered-Power-Distributive Control,” in Proc. IEEE Int. Symp. on Circuits & Systems, Rio de Janeiro, Brazil, May 2011. pp. 1612–1615,
    [10] M. H. Huang, Y. N. Tsai, and K. H. Chen, “Sub-1 V input single-inductor dual-output (SIDO) DC-DC converter with adaptive load-tracking control (ALTC) for single-cell-powered system,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1713–1724, Jul. 2010.
    [11] X. Jing, P. K. T. Mok, and M. C. Lee, “A wide-load-range constant-charge-auto-hopping control single-inductor-dual-output boost regulator with minimized cross-regulation,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2350–2362, Oct. 2011.
    [12] W. C. Chen, S. Y. Ping, T. C. Huang, Y. H. Lee, K. H. Chen, and C. L. Wey, “A Switchable Digital-Analog Low-Dropout Regulator for Analog Dynamic Voltage Scaling Technique,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 740–750, Mar. 2014.
    [13] Y. Zhang and D. Ma, “A Fast-Response Hybrid SIMO Power Converter with Adaptive Current Compensation and Minimized Cross-Regulation,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1242–1255, May 2014.
    [14] K. S. Seol, Y. J. Woo, G. H. Cho, G. H. Cho, J. W. Lee, and S. I. Kim, “Multiple-Output Step-Up/Down Switching DC-DC Converter with Vestigial Current Control,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 442–443.
    [15] K. C. Lee, C. S. Chae, G. H. Cho, and G. H. Cho, “A PLL-Based High-Stability Single- Inductor 6-channel Output DC-DC Buck Converter,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 200–201.
    [16] S. W. Wang, G. H. Cho, and G. H. Cho, “A High-Stability Emulated Absolute Current Hysteretic Control Single-Inductor 5-Output Switching DC-DC Converter with Energy Sharing and Balancing,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 276–277.
    [17] C. W. Kuan and H. C. Lin, “Near-Independently Regulated 5-Output Single-Inductor DC-DC Buck Converter Delivering 1.2W/mm2 in 65nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp.274–275.
    [18] J. M. Kim, D. S. Kim, and C. W. Kim, “A Single-Inductor Eight-Channel Output DC–DC Converter With Time-Limited Power Distribution Control and Single Shared Hysteresis Comparator,” IEEE Trans. Circuits & Syst. I: Regular Papers, vol. 60, no. 12, pp. 3354–3367, Dec. 2013.
    [19] D. Z. Lu, Y. Qian, and Z. L. Hong, “An 87%-Peak-Efficiency DVS-Capable Single-Inductor 4-Output DC-DC Buck Converter with Ripple-Based Adaptive Off-Time Control,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2014, pp. 82–83.
    [20] C. L. Wei and M. H. Shih, “Design of a Switched-Capacitor DC-DC Converter with a Wide Input Voltage Range,” IEEE Transactions on Circuits & Syst. I: Regular Papers, vol. 60, no. 6, pp. 1648–1656, Jun. 2013.
    [21] H. H. Wu, C. L. Wei, Y. C. Hsu, and Darling, R., “Adaptive Peak-Inductor-Current Controlled PFM Boost Converter with a Near-Threshold Startup Voltage and High Efficiency,” IEEE Trans. Power Electron., to be published.
    [22] W. F. Sun, C. X. Han, M. Yang, S. Xu, and S. L. Lu, “A Ripple Control Dual-Mode Single-Inductor Dual-Output Buck Converter With Fast Transient Response,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, to be published.

    無法下載圖示 校內:2019-09-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE