簡易檢索 / 詳目顯示

研究生: 郭德侯
Saputra, Adho Triananta
論文名稱: 超高性能纖維混凝土複合鋼承板之分段分析
Segmental Analysis of Steel Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Composite Slab
指導教授: 阿力
Sturm, Alexander
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 94
中文關鍵詞: 超高性能纖維混凝土(UHPFRC)複合板分段分析彎矩-曲率載荷-撓度行為
外文關鍵詞: Steel Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Composite Slabs, Segmental analysis, Moment-Curvature, Load-deflection behavior
相關次數: 點閱:37下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究通過分析方法和實驗驗證研究了超高性能纖維混凝土(UHPFRC)複合板的彎曲性能。目前的方法,例如m-k和部分剪力連接(PSC)方法,雖然有效,但需要廣泛的全尺寸測試,並且缺乏全面的機械模型。本研究提出了一種基於彎矩-曲率模型的分段分析的解析模型,以解決這些識別出的空白。該研究進行了分段分析,並將結果與實驗數據進行了驗證。結果表明,較短的剪力跨度顯著提高了複合板的彎曲能力。具體而言,剪力跨度為400毫米的試體顯示出最高的承載能力,而剪力跨度較長的試體(800毫米和1200毫米)顯示出逐漸降低的承載能力。結果還表明,較高的纖維體積(2%)在較短跨度內提高了峰值載荷能力,但在較長跨度內則沒有。使用彎矩-曲率方法的分段分析有效預測了載荷-撓度行為,準確捕捉了初始彎曲行為和峰值載荷。然而,峰值後行為顯示出差異,強調了需進一步完善解析模型。提出的分段分析方法提供了一種可靠的彎曲行為預測,有助於開發更有效的結構分析。

    This study investigates the flexural performance of Steel Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Composite Slabs through an analysis approach and experimental validation. Current methods, such as the m-k and Partial Shear Connection (PSC) approach, while effective, require extensive full-scale testing and lack comprehensive mechanical models. This research proposes an analytical model using segmental analysis based on the moment-curvature model to address the identified gaps. The study involved conducting segmental analysis and validating the results with experimental data. The findings demonstrate that shorter shear spans significantly enhance the flexural capacity of composite slabs. Specifically, specimens with 400 mm shear spans exhibited the highest load-carrying capacities, while those with longer shear spans (800 mm and 1200 mm) showed progressively lower capacities. The results also indicated that a higher fiber volume (2%) enhances peak load capacity in shorter spans but not in longer spans. The segmental analysis using the moment-curvature approach effectively predicted the load-deflection behavior, capturing initial flexural behavior and peak loads accurately. However, the post-peak behavior showed discrepancies, highlighting the need for further refinement of the analytical model. The proposed segmental analysis method provides a reliable prediction of flexural behavior, contributing to the development of more efficient structural analysis.

    COMPLETION OF DEGREE EXAM CERTIFICATE II 摘要 III ABSTRACT IV ACKNOWLEDGEMENT V TABLE OF CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1. Ultra-High-Performance Fiber Reinforced Concrete 4 2.2. Steel Deck Composite Slab 5 2.3. Bond-slip Relationship for composite slabs 6 2.4. Existing Composite Slab Analysis Method 9 2.5. Moment-Curvature Analysis 12 2.6. Segmental Analysis for Concrete Structure 14 2.7. Summary 17 CHAPTER 3 ANALYSIS INPUTS 18 3.1. Material Properties 18 3.1.1. Concrete Properties 18 3.1.2. Steel Deck Properties 21 3.1.3. Bond-Slip Properties 23 3.2. Specimen Specification 25 CHAPTER 4 ANALYSIS OVERVIEW 26 4.1. Composite Slab Analysis 27 4.2. Cross-Section Moment-Curvature Analysis 29 4.3. Partial Interaction 33 4.4. Concrete Crushing Accommodation 36 4.5. Load–Deflection Calculation 37 CHAPTER 5 ANALYSIS RESULTS 39 5.1. Validation 43 5.2. Analysis Result 1% - 400 46 5.2.1. Moment-Curvature Curve 1% - 400 46 5.2.2. Load-Slip Curve 1% - 400 46 5.2.3. Load-Deflection Curve 1% - 400 47 5.3. Analysis Result 1% - 800 47 5.3.1. Moment-Curvature Curve 1% - 800 47 5.3.2. Load-Slip Curve 1% - 800 48 5.3.3. Load-Deflection Curve 1% - 800 48 5.4. Analysis Result 1% - 1200 49 5.4.1. Moment-Curvature Curve 1% - 1200 49 5.4.2. Load-Slip Curve 1% - 1200 49 5.4.3. Load-Deflection Curve 1% - 1200 50 5.5. Analysis Result 2% - 400 52 5.5.1. Moment-Curvature Curve 2% - 400 52 5.5.2. Load-Slip Curve 2% - 400 52 5.5.3. Load-Deflection Curve 2% - 400 53 5.6. Analysis Result 2% - 800 53 5.6.1. Moment-Curvature Curve 2% - 800 53 5.6.2. Load-Slip Curve 2% - 800 54 5.6.3. Load-Deflection Curve 2% - 800 54 5.7. Analysis Result 2% - 1200 55 5.7.1. Moment-Curvature Curve 2% - 1200 55 5.7.2. Load-Slip Curve 2% - 1200 55 5.7.3. Load-Deflection Curve 2% - 1200 56 CHAPTER 6 DISCUSSION AND CONCLUSION 58 6.1. Experimental and Analytical Result of 1% Fiber Volume 58 6.2. Experimental and Analytical Result of 2% Fiber Volume 61 6.3. Experimental and Analytical Results Comparison 63 6.4. Comparison of The Effect of Shear Span 67 6.5. Comparison of The Effect of Fiber Volume 69 6.6. Parametric Study 72 6.7. Discussion on Stiffness and Ductility 74 6.8. Conclusion 78 REFERENCES 80

    ASCE. (1992). Standard for the Structural Design of Composite Slabs. In. New York: American Society of Civil Engineers.
    Chen, S. (2003). Load carrying capacity of composite slabs with various end constraints. Journal of Constructional Steel Research, 59(3), 385-403. https://doi.org/10.1016/S0143-974x(02)00034-2
    Chen, S., Visintin, P., & Oehlers, D. J. (2022). Bond between very-high and ultra-high performance fibre reinforced concrete and profiled deck sheeting. Journal of Building Engineering, 52.https://doi.org/ARTN 10442610.1016/j.jobe.2022.104426
    Chen, S. R., Visintin, P., & Oehlers, D. J. (2023). Experimental investigation of the influence of fibre content on the flexural performance of simply supported and continuous steel/UHPC composite slabs. Steel and Composite Structures, 49(5), 571-585. https://doi.org/10.12989/scs.2023.49.5.571
    de Andrade, S. A. L., Vellasco, P. C. G. D., da Silva, J. G. S., & Takey, T. H. (2004). Standardized composite slab systems for building constructions. Journal of Constructional Steel Research, 60(3-5), 493-524. https://doi.org/10.1016/S0143-974x(03)00126-3
    Dhakal, S., & Moustafa, M. A. (2019). MC-BAM: Moment-curvature analysis for beams with advanced materials. Softwarex, 9, 175-182. https://doi.org/10.1016/j.softx.2019.01.014
    Eurocode-4. (2004). Eurocode 4: Design of composite steel and concrete structures. In EN 1994-1-1:2004 – Part 1-1: General rules and rules for buildings.
    Feng, Q., Wei, P., Liu, X. X., Wang, G. N., & Xu, R. Q. (2020). Short-term load-deflection behavior of corroded RC beams with confinement effect based on the partial-interaction segmental approach. Engineering Structures, 220. https://doi.org/ARTN 111014
    10.1016/j.engstruct.2020.111014
    Gholamhoseini, A., Gilbert, R. I., Bradford, M. A., & Chang, Z. T. (2014). Longitudinal shear stress and bond-slip relationships in composite concrete slabs. Engineering Structures, 69, 37-48. https://doi.org/10.1016/j.engstruct.2014.03.008
    Kan, Y. C., Chen, L. H., & Yen, T. (2013). Mechanical behavior of lightweight concrete steel deck. Construction and Building Materials, 42, 78-86. https://doi.org/10.1016/j.conbuildmat.2013.01.007
    Knight, D., Visintin, P., & Oehlers, D. J. (2015). Displacement-based simulation of time-dependent behaviour of RC beams with prestressed FRP or steel tendons. Structural Concrete, 16(3), 406-417. https://doi.org/10.1002/suco.201400039
    Oehlers, D. J., Visintin, P., & Lucas, W. (2016). Flexural Strength and Ductility of FRP-Plated RC Beams: Fundamental Mechanics Incorporating Local and Global IC Debonding. Journal of Composites for Construction, 20(2). https://doi.org/Artn 04015046
    10.1061/(Asce)Cc.1943-5614.0000610
    Oehlers, D. J. B. (1999). Elementary Behaviour of Composite Steel & Concrete Structural Members. Oxford Pergamon Press.
    Qi, J. N., Cheng, Z., Wang, J. Q., & Tang, Y. Q. (2020). Flexural behavior of steel-UHPFRC composite beams under negative moment. Structures, 24, 640-649. https://doi.org/10.1016/j.istruc.2020.01.022
    Rana, M. M., Uy, B., & Mirza, O. (2015). Experimental and numerical study of the bond-slip relationship for post-tensioned composite slabs. Journal of Constructional Steel Research, 114, 362-379. https://doi.org/10.1016/j.jcsr.2015.08.018
    Rezakhani, R., Scott, D. A., Bousikhane, F., Pathirage, M., Moser, R. D., Green, B. H., & Cusatis, G. (2021). Influence of steel fiber size, shape, and strength on the quasi-static properties of ultra-high performance concrete: Experimental investigation and numerical modeling. Construction and Building Materials, 296.https://doi.org/ARTN 123532
    10.1016/j.conbuildmat.2021.123532
    Schuster, R. M. (1970). Strength and Behavior of Cold-Rolled Steel-Deck-Reinforced Concrete Floor Slabs Lowa State University of Science and Technology Ames].
    Sturm, A. B., Visintin, P., & Oehlers, D. J. (2020a). Blending fibres to enhance the flexural properties of UHPFRC beams. Construction and Building Materials, 244. https://doi.org/ARTN 118328
    10.1016/j.conbuildmat.2020.118328
    Sturm, A. B., Visintin, P., Seracino, R., Lucier, G. W., & Oehlers, D. J. (2020b). Flexural performance of pretensioned ultra-high performance fibre reinforced concrete beams with CFRP tendons. Composite Structures, 243. https://doi.org/ARTN 112223
    10.1016/j.compstruct.2020.112223
    Tayeh, A. S. A., Nahla N. Hilal, B. H. Abu Bakar, Mustafa Maher Al-Tayeb, and Walid N., & Mansour. (2019). Properties of ultra-high-performance fiber-reinforced concrete (UHPFRC)—a review paper. International Symposium on Green and Sustainable Technology (ISGST2019),
    Toledo, R. D., Koenders, E. A. B., Formagini, S., & Fairbairn, E. M. R. (2012). Performance assessment of Ultra High Performance Fiber Reinforced Cementitious Composites in view of sustainability. Materials & Design, 36, 880-888. https://doi.org/10.1016/j.matdes.2011.09.022
    Visintin, P., & Oehlers, D. J. (2018). Fundamental mechanics that govern the flexural behaviour of reinforced concrete beams with fibre-reinforced concrete. Advances in Structural Engineering, 21(7), 1088-1102. https://doi.org/10.1177/1369433217739705
    Visintin, P., Oehlers, D. J., & Haskett, M. (2013a). Partial-interaction time dependent behaviour of reinforced concrete beams. Engineering Structures, 49, 408-420. https://doi.org/10.1016/j.engstruct.2012.11.025
    Visintin, P., Oehlers, D. J., Muhamad, R., & Wu, C. (2013b). Partial-interaction short term serviceability deflection of RC beams. Engineering Structures, 56, 993-1006. https://doi.org/10.1016/j.engstruct.2013.06.021
    Yoo, D. Y., & Yoon, Y. S. (2016). A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 10(2), 125-142. https://doi.org/10.1007/s40069-016-0143-x

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE