簡易檢索 / 詳目顯示

研究生: 劉業繡
Liu, Yeh-Hsiu
論文名稱: 高鉛與共晶錫鉛複合銲錫隆點與底層金屬之界面反應及電遷移行為
Electromigration and Interfacial Reaction between 5Sn-95Pb and 63Sn-37Pb Composite Solder and Under Bump Metallurgy
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 覆晶接合電遷移界金屬化合物
外文關鍵詞: Intermetallic compound, Flip chip, Electromigration
相關次數: 點閱:90下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    在一般高溫應用環境下,銲錫隆點底層金屬與錫反應形成介金屬化合物將會導致元件產生嚴重的可靠度問題。覆晶結構中常使用共晶錫鉛或是高鉛銲錫與Ni(V)系統組合,銲錫隆點剪力強度與高溫儲存實驗以及熱循環或是高溫操作壽命測試經常被用來評估銲錫隆點底層金屬之消耗速率及電遷移行為。
    本研究中首先測試5Sn-95Pb銲錫隆點在高溫時效後之剪力強度,研究結果發現有兩種化合物在界面生成,分別為Cu3Sn 與AlxNiy,其中Cu3Sn位於銲錫合金與Ni(V)層之間而AlxNiy則位於Ni(V)與鋁導線間。研究結果顯示高溫時效熱處理後,Cu3Sn之生成並不影響銲錫隆點之剪力強度,約維持在27–30克之間,然而經過30次重複重流後之銲錫隆點剪力強度約略降為25克,此乃由於AlxNiy的生成所導致。同時也可以發現經過剪力測試後之銲錫隆點大部份呈現階梯狀滑移之外觀。
    本研究其次對覆晶接合之構裝體進行多次重流試驗,並分析複合銲錫隆點對底層金屬及基材上之金屬可能發生之界面反應。本研究中,在隆點與底層金屬間生成之化合物主要是Cu3Sn,而在隆點與基材金屬層間生成之化合物則為Ni3Sn4。然而經過5次重流後Cu3Sn轉變成Cu6Sn5,光學顯微鏡及EDS分析顯示共晶錫鉛中之錫原子會沿著5Sn-95Pb銲錫隆點表面快速擴散至銲錫合金與底層金屬間之界面,此外Ni(V)中的鎳原子亦會析出形成(Cu,Ni)6Sn5,相同地Ni3Sn4也會轉變成(Ni,Cu)3Sn4,銅是由底層金屬所提供。
    電遷移試驗係探討不同方向之電流對銲錫隆點之影響,在150oC、電流密度5×103A/cm2實驗條件下,研究結果發現以Al/Ni(V)/Cu為陰極之銲錫隆點最易失效。銲錫合金中之鉛原子其移動方向與電子流方向一致。Ni(V)中的鎳原子受電子流之影響而擴散至Cu-Sn介金屬內形成Cu-Ni-Sn三元化合物。鎳原子的消耗使得鋁原子在高電流密度下衝破釩金屬層,造成銲錫隆點電性之失效。研究結果也顯示,銲錫隆點内之電流密度分佈對銲錫合金中之富錫相造成長條狀及圓柱狀兩種型態。

    Abstract

    In high temperature applications, the conversion of the under metallurgy (UBM) into UBM-Sn intermetallics can ultimately limit the reliability of flip chip components. The flip chip structures employed are eutectic or high-lead Sn/Pb solder jointed to Ni(V). The shear strength of the bump was investigated after high temperature aging and thermal cycling. The bump was also investigated for electromigration behavior. The interfacial interaction between UBM and solder was explored.
    It was found that two kinds of intermetallic compound, Cu3Sn and AlxNiy, were formed at the interface. The Cu3Sn was formed between the solder and Ni(V) layer while AlxNiy was formed between Ni(V) and Al layer. The formation of the Cu3Sn compound will not affect the shear strength, 27–30 g, of the solder bump even after a high temperature long time aging test. However, the shear strength after the 30th reflow drops to less than 25 g, ascribed to the formation of a brittle compound AlxNiy. Meanwhile, the shear fractured solder bump exhibits stepwise appearance.
    After assembly, the interfacial reactions between the 5Sn-95Pb/63Sn-37Pb composite solder and Al/Ni(V)/Cu under-bump metallization (UBM) as well as the substrate metallization were systematically investigated during the multiple reflow process. The major interfacial intermetallic compound (IMC) formed at UBM/solder interface is Cu3Sn, while it is Ni3Sn4 at UBM/substrate interface. However, the Cu3Sn intermetallic compound would translate into Cu6Sn5 after 5 reflow cycles. The results of Optical Microscope (OM) and Energy Dispersive Spectrometer X-ray (EDS) investigation show that Sn from the eutectic solder (63Sn/37Pb) migrates along the surface of 5Sn/95Pb solder to UBM/solder interface. Also, the Ni from Ni(V) layer reacted with Sn to form (Cu,Ni)6Sn5 intermetallic compound after 5 reflow cycles. According to the EDS analysis, the intermetallic compound would transform from Ni3Sn4 to (Ni,Cu)3Sn4 in the solder/substrate side after 10 reflow cycles. The results of the cross section investigation indicate that Cu would diffuse from UBM to substrate during multiple reflow process.
    The electromigration-induced failure in the composite solder bump consisting of 5Sn-95Pb on the chip side and 63Sn-37Pb on the substrate side was studied. It was observed that failure occurred in the solder joints in a downward electron flow with UBM as cathode. The Pb atoms were found to move in the same direction as with the electron current flow. During electromigration, Ni in the Ni(V) layer dissolved into the Cu-Sn IMC to form the Cu-Ni-Sn ternary IMC. The vanadium in the Ni(V) was broken under current stressing of 1711 hours due to the completely consumed of Ni in the Ni(V) layer. The Sn-rich phase of the solder bumps showed gradual streaking and reorientation upon current stressing. The mechanism of reorientation of Sn-rich phases in the solder was discussed.

    總目錄 中文摘要.................................................................................................... I 英文摘要................................................................................................. III 誌謝.......................................................................................................... V 總目錄......................................................................................................VI 表目錄...................................................................................................VIII 圖目錄......................................................................................................IX 中英對照表............................................................................................ XII 第壹章 簡介..............................................................................................1 1-1覆晶接合..............................................................................................1 1-1-1覆晶接合技術簡介...........................................................................1 1-1-2銲錫隆點基本結構...........................................................................3 1-2銲錫合金與隆點底層金屬之介面反應..............................................5 1-2-1介金屬之成長動力學.......................................................................5 1-2-2銅-錫系統之界面反應......................................................................6 1-2-3錫-鎳系統之界面反應......................................................................9 1-2-4鋁-鎳系統之界面反應......................................................................9 1-3電遷移................................................................................................13 1-3-1電遷移之驅動力.............................................................................13 1-3-2覆晶接合銲錫隆點之電遷移行為.................................................16 1-4研究目的............................................................................................19 第貳章 實驗方法與步驟........................................................................20 2-1 實驗構想及設計...............................................................................20 2-2 矽晶片上製作銲錫隆點...................................................................21 2-2-1 銲錫隆點結構與製作...................................................................21 2-2-2 多次重流實驗...............................................................................21 2-2-3 多次熱循環實驗...........................................................................25 2-2-4 時效熱處理實驗...........................................................................25 2-2-5 銲錫隆點剪力測試.......................................................................25 2-3 矽晶片與有機基板覆晶接合...........................................................28 2-3-1 多次熱循環實驗...........................................................................28 2-4 通電實驗...........................................................................................29 2-5 銲錫隆點界面反應分析...................................................................29 2-5-1 界面金屬間化合物之分析...........................................................29 2-5-2 銲錫合金與底層金屬之相互擴散分析.......................................29 第叁章 結果與討論..............................................................................32 3-1 5Sn-95Pb銲錫隆點之剪力強度與界面反應....................................32 3-1-1 5Sn-95Pb銲錫隆點之剪力強度變化............................................32 3-1-2介金屬化合物之型態與分析.........................................................37 3-1-3 5Sn-95Pb銲錫隆點剪力破壞型態…............................................42 3-2 5Sn-95Pb與有機基板接合之固相/液相界面反應..........................47 3-2-1多次熱循環後之界面反應.............................................................47 3-2-1-1 5Sn-95Pb/63Sn-37Pb與Al/Ni(V)/Cu之界面分析.....................47 3-2-2-2 5Sn-95Pb/63Sn-37Pb與Au/Ni-P/Cu之界面分析......................50 3-3 5Sn-95Pb/63Sn-37Pb複合銲錫隆點之電遷移行為.........................53 3-3-1 5Sn-95Pb/63Sn-37Pb與Al/Ni(V)/Cu之界面反應........................53 3-3-1-1 通電時以Al/Ni(V)/Cu端為陰極(cathode)之界面反應............53 3-3-1-2 通電時以Al/Ni(V)/Cu端為陽極(anode)之界面反應...............60 3-3-2 5Sn-95Pb/63Sn-37Pb與Au/Ni-P/Cu之界面反應........................60 3-3-3 電流對5Sn-95Pb/63Sn-37Pb複合銲錫隆點微結構之影響.....60 3-3-4 電流對Au/Ni-P/Cu與OSP/Cu之界面反應影響....….................64 第肆章 結論..........................................................................................72 參考文獻..................................................................................................74 個人簡介..................................................................................................84

    參考文獻
    1. J. L. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chapter 1.
    2. L. F. Miller, “Controlled Collapse Reflow Chip Jointing”, IBM Journal of Research and Development, Vol. 44, No. 1, Jan, 2000, pp. 93-104
    3. P. A. Totta, Advances in Electronic Packaging, ASME, New York, USA, 1997, Volume 1, p. 337.
    4. J. Baliga, “Flip-chip Packaging: Prepare for the Ramp-up”, Semiconductor International, Vol. 21, No. 3, 1998, pp. 87-94.
    5. R. G. Werner, D. F. Frear, J. DeRosa, and E. Sorongon, “Flip Chip Packaging “, Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces, Georgia, USA, March 14-17, 1999, pp. 246-251.
    6. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 3.
    7. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chapter 15.
    8. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chapter 6.
    9. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chapter 9.
    10. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, USA, 1996, Chapter 1.
    11. M. Pecht, Integrated Circuit, Hybrid, and Multichip module Package Design Guidelines, John Wiley & Sons, New York, USA, 1994, Chapter 7.
    12. P. E. Hovsepian, D. B. Lexis, and W. D. Munz, “Recent Progress in Large Scale Manufacturing of Multilayer/Superlattice Hard Coatings”, Surface and Coatings Technology, Vol. 133, 2000, pp. 166-175.
    13. K. L. Lin and Y. T. Liu, “Manufacturing of Solder Bumps with Cu/Ta/Cu as Under Bump Metallurgy”, IEEE Transactions on Advanced Packaging, Vol. 22, No. 4, 1999, pp. 580-585.
    14. C. J. Chen and K. L. Lin, “Electroless Ni-Cu-P barrier between Si/Ti/Al Pad and Sn-Pb Flip-chip Solder Bumps”. IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, 2001, pp. 691-697.
    15. K. L. Lin and Y. C. Liu, “Manufacturing of Cu/Electroless Nickel/Sn-Pb Flip Chip Solder Bumps”, IEEE Transactions on Advanced Packaging, Vol. 22, No. 4, 1999, pp. 575-579.
    16. H. A. Sorkhabi, H. Dolati, N. P. Ahmadi, and J. Manzoori, “Electroless Deposition of Ni-Cu-P Alloy and Study of the Influences of Some parameters on the Properties of Deposits”, Applied Surface Science., Vol. 185, No. 3, 2002, pp. 155-160.
    17. S. Wiegele, P. Thompson, R. Lee, and E. Ramsland, “Reliability and Process Characterization of Electroless Nickel-Gold/Solder Flip Chip Interconnect Technology”, Proceedings of 48th Electronic Components and Technology Conference, Washington, USA, May 25-28, 1998, pp. 861-866.
    18. J. L. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chapter 5.
    19. E. P. Wood and K. L. Nimmo, “In Search of New Lead-free Electronic Solders”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 709-714.
    20. C. M. Miller, I. E. Anderson, and J. F. Smith, “A Viable Tin-lead Solder Substitute: Sn-Ag-Cu”, Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 595-602.
    21. M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-free, Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 687-690.
    22. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, No, 5, 2000, pp.95-141.
    23. Y. Fujiwara, H. Enomoto, T. Nogao, and H. Hoshika, “Composite Plating of Sn-Ag Alloys for Pb-free Soldering”, Surface and Coatings Technology, Vol. 169, No. 1, 2003, pp. 100-103.
    24. J. H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA, 1997, Chapter 3.
    25. C. H. Zhong and S. Yi, “Solder Joint Reliability of Plastic Ball Grid Array Packages”, Soldering and Surface Mount Technology, Vol. 11, No. 1, 1999, pp. 44-48.
    26. R. H. Esser, A. Dimoulas, N. Strifas, A. Christou, and N. Papanicolau, “Materials Interfaces in Flip Chip Interconnects for Optical Components; Performance and Degradation Mechanisms”, Microelectronics Reliability, Vol. 38, No. 6-8, 1998, pp. 1307-1312.
    27. R. A. Swalin, Thermodynamics of Solids, J. Wiley, New York, USA, 1972, Chapter 10.
    28. D. R. Frear, W. B. Jones, and K. R. kinsman, Solder Mechanics: A State of the Art Assessment, TMS, Pennsylvania, USA, 1991, Chapter 2.
    29. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish”, Journal of Electronic Materials, Vol.30, No. 9, 2001, pp. 1152-1156.
    30. J. Y. Park, C. W. Yang, J S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung, and C. S. Kang, “Investigation of Interfacial Reaction Between Sn-Ag Eutectic Solder and Au/Ni/Cu/Ti Thin Film Metallization”, Journal of Electronic Materials, Vol. 30 No. 9, 2001, pp. 1165-1170.
    31. W. K. Choi and H. M. Lee, “Effect of Ni Layer Thickness and Soldering Time on Intermetallic Compound Formation at the Interface Between Molten Sn-3.5Ag and Ni/Cu Substrate”, Journal of Electronic Materials, Vol. 28, No. 11, 1999, pp. 1251-1255.
    32. H. T. Luo and S. W. Chen, “Phase Equilibria of the Ternary Ag-Cu-Ni system and the Interfacial Reactions in the Ag-Cu/Ni Couples”, Journal of Materials Science, Vol. 31, No. 19, 1996, pp. 5059-5067.
    33. I. A. Aksay, C. E. Hoge, and J. A. Pask, “Wetting Under Chemical Equilibrium and Nonequilibrium Conditions”, Journal of Physical Chemistry, Vol. 78, No. 12, 1974, pp. 1178-1183.
    34. J. H. Lau, Handbook of Fine Pitch Surface Mount Technology, Van Nostrand Reinhold, New York, USA, 1994, Chapter 3.
    35. H. H. Manko, Solders and Soldering, 2nd Edition, McGraw-Hill, New York, USA, 1979, Chapter 4.
    36. K. C. Liu and J. G. Duh, “Microstructural evolution in Sn/Pb solder and Pb/Ag thick film conductor metallization”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 4, 1991, pp. 703-707.
    37. R. J. K. Wassink, Soldering in Electronics, 2nd Edition, Electrochemical Publications Ltd., Ayr, Scotland, 1984, Chapter 4.
    38. P. Nash, M. F. Singleton and J. L. Murray, Alloy Phase Diagrams, ASM Handbook Vol. 3, eds. H. Baker and H. Okamoto, (Materials Park, OH: ASM International 1992), p. 249.
    39. T. B. Massalski, Binary Phase Diagrams, ASM, Metal Park, Ohio, USA, Volume 1, 1986, p. 965.
    40. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, No. 2-3, 1996, pp. 217-223.
    41. K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 21, No. 4, 1973, pp. 347-354.
    42. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 30, No. 5, 1982, pp. 947-952.
    43. P. T. Vianco, K. L. Erickson, and P. L. Hopkins, “Solid State Intermetallic Compound Growth Between Copper and High Temperature, Tin-Rich Solders--Part I: Experimental Analysis”, Journal of Electronic Materials, Vol. 23, No. 8, 1994, pp. 721-728.
    44. P. T. Vianco, P. F. Hlava, and A. C. Kilgo, “Intermetallic Compound Layer Formation Between Copper and Hot-Dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb Coatings”, Journal of Electronic Materials, Vol. 23, No. 7, 1994, pp. 583-594.
    45. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Metallurgica et Materialia, Vol. 43, No. 1, 1995, pp. 329-337.
    46. S. K. Kang, R. S. Rai, and S. Purushothaman, “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead-free Tin-rich Solders”, Journal of Electronic Materials, Vol. 25, No. 7, 1996, pp. 1113-1120.
    47. J. O. G. Parent, D. D. L. Chung, and I. M. Bernstein, “Effects of Intermetallic Formation at the Interface Between Copper and Lead-tin Solder”, Journal of Materials Science, Vol. 23, No. 7, 1988, pp. 2564-2572.
    48. H. K. Kim and K. N. Tu, “Rate of Consumption of Cu in Soldering Accompanied by Ripening”, Applied Physics Letters, Vol. 67, No. 14, 1995, pp. 2002-2004.
    49. T. B. Massalski, Binary Phase Diagrams, ASM, Metal Park, Ohio, USA, Volume 2, 1986, pp. 1759.
    50. P. J. Kay and C. A. Mackay, “Growth of Intermetallic Compounds on Common Basis Materials Coated with Tin and Tin-Lead Alloys”, Transactions of the Institute of Metal Finishing, Vol. 54, No 1, 1976, pp. 68-74.
    51. W. J. Tomlinson and H. G. Rhodes, “Kinetics of Intermetallic Compound Growth Between Nickel, Electroless Ni-P, Electroless Ni-B and Tin at 453 to 493 K”, Journal of Materials Science, Vol. 22, No. 2, 1987, pp. 1769-1772.
    52. Z. Marinkovic and V. Simic, “Room Temperature Interactions in Ni/Metal Thin Film Couples”, Thin Solid Films, Vol. 98, No. 2, 1982, pp. 95-100.
    53. S. K. Kang and V. Ramachandran, “Growth Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface”, Scripta Metallurgica, Vol. 14, No. 4, 1980, pp. 421-424.
    54. K. L. Lin and Y. C. Liu, “Reflow and Property of Al/Cu/Electroless Nickel/Sn-Pb Solder Bumps”, IEEE Transactions on Advanced Packaging, Vol. 22, No. 4, 1999, pp. 568-574.
    55. M. He, A. Kumar, P. T. Yeo, G. J. Qi, Z. Chen, “Interfacial Reaction Between Sn-rich Solders and Ni-based Metallization”, Thin Solid Film, Vol. 462, 2004, pp. 387-394.
    56. T. B. Massalski, Binary Phase Diagrams, ASM, Metal Park, Ohio, USA, Volume 1, 1986, p. 140.
    57. A. J. Hickl and R. W. Heckel, “Kinetics of Phase Layer Growth During Aluminide Coating of Nickel”, Metallurgical Transactions A, Vol. 6A, No. 3, 1975, p. 431-440.
    58. R. J. Tarento and G. Blaise, “Studies of the First Steps of Thin Film Interdiffusion in the Al-Ni System”, Acta Metallurgica, Vol. 37, No. 9, 1989, pp. 2305-2312.
    59. S. B. Jung, Y. Minamino, T. Yamane and S. Saji, “Reaction Diffusion and Formation of Al3Ni And Al3Ni2 Phases in the AI-Ni System”, Journal of Materials Science Letters, Vol. 12, No. 21, 1993, pp. 1684-1686.
    60. E. Ma, C. V. Thompson and L. A. Clevenger, “Nucleation and Growth During Reactions in Multilayer Al/Ni Films: The early Stage of Al3Ni Formation”, Journal of Applied Physics, Vol. 69, No. 4, 1991, pp. 2211-2218.
    61. A. S. Edelstein, R. K. Everett, G. Y. Richardson, S. B. Qadri, E. I. Altman, J. C. Foley and J. H. Perepezko, “Intermetallic Phase Formation During Annealing of Al/Ni Multilayers”, Journal of Applied Physics, Vol. 76, No. 12, 1994, pp. 7850-7859.
    62. U. Rothhaar, H. Oechsner, M. Scheib, and R. Muller, “Compositional and Structural Characterization of Temperature-induced Solid-state Reactions in Al/Ni Multilayers”, Physical Review B: Condensed Matter and Materials Physics, Vol. 61, No. 2, 2000, pp. 974-979.
    63. W. Seith and H. Etzold, “Über Die Beweglichkeit Von Gold in Festem Blei”, Z. Elektrochem, Vol. 40, 1934, pp. 829-832.
    64. K. Schartz and R. Stockert, “Die Elektrolytische Wanderung Des Golds in Festen Blbe-Gold-Legierungen”, Z. Elektrochem, Vol. 45, 1939, pp. 464-466.
    65. F. Skaupy, “Die Elektrizitätsleitung in Metallen”, Verh. Dtsch. Phys. Ges, Vol. 16, 1914, pp. 156-167.
    66. F. Skaupy, “Die Elektrizitätsleitung in Verdünnten Amalgamen”, Z. Phys. Chem, Vol. 58, 1907, pp. 560-566.
    67. F. Skaupy, “Elektrizitätsleitung und Konstitution Flüssiger Metalle und Legierungen”, Phys. Z, Vol. 21, 1920, pp. 597-601.
    68. H. Wever and W. Seith, “Neue Ergebnisse Bei Der Elektrolyse Fester Metallischer Phasen”, Z. Elektrochem, Vol. 59, 1955, pp. 942-946.
    69. V. B. Fiks, “On the Mechanism of the Ions in Metals”, Sov. Phys. Solids state (English trans.), Vol. 1, No. 1. 1959, pp. 14-28.
    70. H. B. Huntington and A. R. Grone, “Current-Induced Marker Motion in Gold Wires”, Journal of Physics and Chemistry of Solids, Vol. 20, No. 1, 1961, pp. 76-87.
    71. C. K. Hu and H. B. Huntington, in Diffusion Phenomena in Thin Films and Microelectronic Materials, Eds., D. Gupta and P. S. Ho(Noyes, Park Ridge, NJ, 1988).
    72. C. K. Hu, H. B. Huntington, and G. R. Gruzalski, “Atom Motions of Copper Dissolved in Lead-Tin Alloys”, Physical Review B, Vol. 28, No. 2, 1983, pp. 579-585.
    73. B. F. Dyson, “Diffusion of Gold and Silver in Tin Single Crystals”, Journal of Applied Physics, Vol. 37, No. 6, 1966, pp. 2375-2377.
    74. B. F. Dyson, T. R. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper in Tin”, Journal of Applied Physics, Vol. 38, No. 8, 1967, pp. 3408.
    75. A. Sawatzky, “Diffusion of Indium in Tin Single Crystals”, Journal of Applied Physics, Vol. 29, No. 9, 1958, pp. 1303-1305.
    76. F. H. Huang and H. B. Huntington, “Diffusion of Sb124, Cd109, Sn113, and Zn65 in tin”, Physical Review B, Vol. 9, No. 4, 1974, pp. 1479-1488.
    77. B. F. Dyson, T. Anthony, and D. Turnbull, “Interstitial Diffusion of Copper and Silver in Lead”, Journal of Applied Physics, Vol. 37, No. 6, 1966, pp. 2370-2374.
    78. T. Y. Lee, K. N. Tu, and D. R. Frear, “Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps”, Journal of Applied Physics, Vol. 90, No. 9, 2001. pp. 4502-4508.
    79. T. Y. Lee, K. N. Tu, S. M. Kuo and D. R. Frear, “Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology”, Journal of Applied Physics, Vol. 89, No. 6, 2001, pp. 3189-3194.
    80. J. W. Nah, j. H. Kim, H. M. Lee and K. W. Paik, “Electromigration in Flip Chip Solder Bump of 97Pb–3Sn/37Pb–63Sn Combination Structure”, Acta Materialia, Vol. 52, No. 1, 2004. pp. 129-136.
    81. C. L. Lai, C. H. Lin and C. Chen, “Electromigration at the High-Pb-Eutectic SnPb Solder Interface”, Journal of Materials Research, Vol. 19, No. 2, 2004, pp. 550-556.
    82. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius and H. Balkan, “Current-crowding-induced Electromigration Failure in Flip Chip Solder Joints”, Applied Physics Letters, Vol. 80, No. 4, 2002, pp. 580-582.
    83. Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao, “Electromigration Induced Failure in Flip Chip Solder Joints”, Journal of Electronic Materials, Vol. 34, No. 1, 2005, pp. 27-33.
    84. S. Brandenberg and S. Yeh, “ Electromigration Studies of Flip Chip Bump Solder Joints”, Surface Mount International Conference and Exposition, SMI 98 Proceedings, 1998, pp. 337-344.
    85. C. Y. Liu, C. Chen, C. N. Liao and K. N. Tu, “Microstructure-electromigration Correlation in a Thin Stripe of Eutectic SnPb Solder Stressed Between Cu Electrodes”, Applied Physics Letters, Vol. 75, No. 1, 1999, pp. 58-60.
    86. C. Y. Liu, C. Chen and K. N. Tu, “Electromigration in Sn–Pb Solder Strips as a Function of Alloy Composition”, Journal of Applied Physics, Vol. 88, No. 10, 2000, pp. 5703-5709.
    87. W. Roush and J. Jaspal, “Thermomigration in Lead-Indium Solder”, Proceedings of the Electron. Compon. 32nd Conference, San Diego, CA, 1982, p. 342.
    88. G. J. Van Gurp, P. J. De Waard and F. J. Du Chatenier, “Thermomigration in Indium and Indium Alloy Films”, Journal of Applied Physics, Vol. 58, No. 2, 1985, pp. 728-735.
    89. R. A. Johns and D. A. Blackburn, “Grain Boundaries and Their Effect on Thermomigration in Pure Lead at Low Diffusion Temperatures”, Thin Solid Films, Vol. 25, No. 2, 1975, pp. 291-300.
    90. A. J. Sunwoo, J. W. Morris, Jr., and G. K. Lucey, Jr. “The Growth of Cu-Sn Intermetallics at a Pretinned Copper-Solder Interface”, Metallurgical Transactions A, Vol. 23A, April, 1992, pp. 1323-1332.
    91. M. Howes and Z. Saperstein, “The Reaction of Lead-Tin Solders with Copper Alloys”, Vol. 34, February, 1969, pp. 80-85.
    92. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th Edition, Pergamon, New York, USA, 1979, p. 300.
    93. D. Gupta and J. M. Oberschmidt, “Diffusion in Lead Based Solders Used in Microelectronic Industry”, Design and Reliability of Solders and Solder Interconnections, Edited by R. K. Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Murty, P. K. Liaw and W. Winterbottom, The Minerals, Metals & Materials Society, 1997, pp. 59-64.
    94. F. V. Burckbuchler and C. A. Reynolds, “Anisotropy of the Residual Resistivity of Tin with Sb, In, Zn, and Cd Impurities, and the Ideal resistivities and Deviations from matthiessen’s Rule at 77 and 273oK”, Physical Review, vol. 175, No. 2, 1968, pp. 550-555.
    95. J. A. Rayme and B. S. Chandresekhar, “Elastic Constants of β Tin from 4.2oK to 300oK”, Physical Review, vol. 120, No. 5, 1960, pp. 1658-1663.
    96. J. R. Lloyd, “Electromigration Induced Resistance Decrease in Sn Conductors”, Journal of Applied Physics, Vol. 94, No. 10, 2003, pp. 6483-6486.

    下載圖示 校內:立即公開
    校外:2005-07-29公開
    QR CODE