| 研究生: |
張旭皓 Chang, Hsu-Hao |
|---|---|
| 論文名稱: |
應用滑模觀測器及變頻器非線性效應補償之無感測器控制 A Sensorless Control Method with Sliding-Mode Observer and Inverter Nonlinearity Compensation |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 永磁同步馬達 、滑模觀測器 、無位置感測器控制 、變頻器非線性效應 |
| 外文關鍵詞: | Permanent Magnet Synchronous Motor, Sliding Mode Observer, Rotor Position Sensorless Control, Inverter Non-linear Effects |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種針對永磁同步馬達(PMSM)中低速運轉時,提升轉子位置估測精度的無感測器控制策略。系統採用滑模觀測器(Sliding-Mode Observer, SMO),並結合變頻器非線性效應之補償機制,有效修正低速下因電壓誤差造成的估測偏差,使系統於低至高速範圍皆能穩定估測轉子角度並驅動馬達平順運轉。實際應用中,變頻器常因死區(Dead Time)效應與功率開關壓降等非線性現象導致定子電壓誤差,進而影響轉子位置估測準確性,特別在低速運轉時更為明顯。若未妥善補償,將可能造成電流不平衡或突波,降低系統穩定性,甚至導致低速區無法正常運作。本文首先分析上述非理想效應對估測結果之影響,並透過模擬進行量化驗證。接著採用基於參數模型的補償方法修正定子電壓,進一步提升SMO的估測準確度與控制性能。實驗結果顯示,該方法能有效擴展無感測器控制的可運轉範圍,具備良好實務應用潛力。經過實測驗證所提出之方法可在不同操作條件下穩定且準確地估測轉子位置,及提升無感測器控制運轉範圍與系統效能之有效性。
This paper presents a sensorless control strategy to enhance rotor position estimation for Permanent Magnet Synchronous Motors (PMSMs) in low- to medium-speed regions. The proposed system uses a Sliding-Mode Observer (SMO) alongside a compensation mechanism for inverter nonlinearities, including voltage deviations caused by dead time and switching behavior. This improves rotor angle estimation and ensures smooth operation across a wide speed range.In practice, inverter nonlinearities—such as dead time and voltage drops across power devices—cause stator voltage distortion, especially at low speeds. These distortions degrade position estimation accuracy and may lead to current imbalance, torque ripple, or instability. Without compensation, sensorless control performance in low-speed regions is significantly limited. To resolve this, the method analyzes how inverter non-idealities affect estimation and validates the analysis through simulations. A parameter-based correction is introduced to reduce stator voltage error, improving SMO estimation accuracy.Experimental results confirm stable and accurate rotor position estimation, demonstrating the method’s effectiveness and robustness under varying load and speed conditions.
[1] R. J. Hamilton, “DC motor brush life,” IEEE Transactions on Industry Applications, vol. 36, no. 6, pp. 1682-1687, Nov.-Dec. 2000.
[2] 黃得晉,電動車驅動馬達發展現況,金屬中心(ITIS),2012。
[3] A. Augustin, “Incremental Encoder Speed Acquisition Using an STM32 Microcontroller and NI ELVIS,” Sensors, vol. 22, Jul. 2022.
[4] TEXAS INSTRUMENTS, “TMS320F2837xD Dual-Core Microcontorllers”, Datasheet, Feb. 2021.
[5] S. Chi, Z. Zhang, and L. Xu, “Sliding-Mode Sensorless Control of Direct-drive PM Synchronous Motors for Washing Machine Applications,” IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 582–590, Mar.-Apr. 2009.
[6] Y. Bu and A. Wang, “Design an Improved Sensorless Sliding Mode Observer for PMSM,” in Proceedings of 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), Jinan, China, 2020, pp. 100-104.
[7] Q. Hu, L. Liu, C. Zhang and L. Cheng, “Researching for Sensorless Control of PMSM Based on a Novel Sliding Mode Observer,” in Proceedings of 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), Singapore, Singapore, 2018, pp. 542-547.
[8] V. Utkin and H. Lee, "Chattering Problem in Sliding Mode Control Systems," in Proceedings of International Workshop on Variable Structure Systems, 2006. VSS'06., Alghero, Sardinia, pp. 346-350, Jun. 2006.
[9] A. Khlaief, M. Boussak and A. Châari, "A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive," ELSEVIER, Electric Power Systems Research, vol. 108, pp. 1-15, Sept 2013.
[10] O. C. Kivanc and S. B. Ozturk, "Sensorless PMSM Drive Based on Stator Feedforward Voltage Estimation Improved With MRAS Multiparameter Estimation," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1326-1337, Jun. 2018.
[11] A. Qiu, B. Wu and H. Kojori, "Sensorless control of permanent magnet synchronous motor using extended Kalman filter," in Proceedings of 2004 Canadian Conference on Electrical and Computer Engineering, Niagara Falls, ON, Canada, pp. 1557-1562 vol. 3, May 2004.
[12] Z. Zheng, Y. Li and M. Fadel, "Sensorless control of PMSM based on extended kalman filter," in Proceedings of 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, pp. 1-8, Sept. 2007.
[13] 黃永翰,以調變注入電壓及補償變頻器非線性效應提升轉子位置估測精度之全速域無感測器控制法,國立成功大學碩士論文,2024。
[14] Z. Chen, M. Tomita, S. Doki and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 288-295, Apr. 2003.
[15] T. -D. Ton, M. -F. Hsieh and P. -H. Chen, "A Novel Robust Sensorless Technique for Field-Oriented Control Drive of Permanent Magnet Synchronous Motor," IEEE Access, vol. 9, pp. 100882-100894, 2021.
[16] I. Boldea, M. C. Paicu, G. -D. Andreescu and F. Blaabjerg, "“Active Flux” DTFC-SVM Sensorless Control of IPMSM," IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 314-322, June 2009.
[17] 鍾翔安,以電壓調變抑制變頻器非線性效應之無轉子位置感測器控制法,國立成功大學碩士論文,2023。
[18] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, "Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame," IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1054-1061, Aug. 2002.
[19] J. -H. Jang, S. -K. Sul, J. -I. Ha, K. Ide and M. Sawamura, “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1031-1039, July-Aug. 2003.
[20] Y. -D. Yoon, S. -K. Sul, S. Morimoto and K. Ide, “High bandwidth sensorless algorithm for AC machines based on square-wave type voltage injection,” 2009 IEEE Energy Conversion Congress and Exposition, pp. 2123-2130, Sept. 2009.
[21] Y.-D. Yoon and S. -K. Sul, “Sensorless Control for Induction Machines Based on Square-Wave Voltage Injection,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3637-3645, July 2014.
[22] G. -J. Jo and J. -W. Choi, “Gopinath Model-Based Voltage Model Flux Observer Design for Field-Oriented Control of Induction Motor,” IEEE Trancastions on Power Electronics, vol. 34, no. 5, pp. 4581-4592, May 2019.
[23] C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed,” IEEE Transactions on Industrial Electronics., vol. 53, no. 2, pp. 373–378, Apr. 2006.
[24] A. Yousefi-T, P. Pescetto, G. Pellegrino and I. Boldea, “Combined Active Flux and High-Frequency Injection Methods for Sensorless Direct-Flux Vector Control of Synchronous Reluctance Machines,” IEEE Transactions on Power Electronics., vol. 33, no. 3, pp. 2447-2457, March 2018.
[25] M. J. Corley and R. D. Lorenz, "Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds," IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 784-789, Aug. 1998.
[26] S. Kim, J. -I. Ha and S. -K. Sul, "PWM Switching Frequency Signal Injection Sensorless Method in IPMSM," IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1576-1587, Oct. 2012.
[27] J. -H. Jang, J. -I. Ha, M. Ohto, K. Ide and S. -K. Sul, "Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection," IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1595-1604, Dec. 2004.
[28] J. -W. Choi and S. -K. Sul, "Inverter output voltage synthesis using novel dead time compensation," IEEE Transactions on Power Electronics, vol. 11, no. 2, pp. 221-227, Mar. 1996.
[29] 李冠廷,考量磁飽和效應之永磁同步馬達轉矩漣波抑制驅動技術,國立成功大學碩士論文,2022。
[30] 陳念慈,碳化矽功率元件應用於永磁同步馬達驅動器之系統響應分析,國立成功大學碩士論文,2019。
[31] X. Huang, B. Wang and D. Xu, "An Inverter Nonlinearity Compensation Method with Multi-Step Waves for Speed-Sensor less Induction Motor Drives," in Proceedings of 2024 IEEE 7th International Electrical and Energy Conference (CIEEC), Harbin, China, 2024, pp. 2074-2079.
[32] ROHM, “SCT3022AL N-channel SiC power MOSFET”, Datasheet, Nov. 2022.
[33] Y. Park and S. -K. Sul, "A Novel Method Utilizing Trapezoidal Voltage to Compensate for Inverter Nonlinearity," IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4837-4846, Dec. 2012.
[34] N. Urasaki, T. Senjyu, K. Uezato and T. Funabashi, "An adaptive dead-time compensation strategy for voltage source inverter fed motor drives," IEEE Transactions on Power Electronics, vol. 20, no. 5, pp. 1150-1160, Sept. 2005.
[35] Z. Chen, T. Shi, Y. Cao, C. Li and Y. Yan, "An Accurate Inverter Nonlinearity Compensation Method for IPMSM Torque Estimation Based on Numerical Fitting," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp. 2126-2138, April 2023.
[36] Y. Zuo, C. Lai and K. L. V. Iyer, "A Review of Sliding Mode Observer Based Sensorless Control Methods for PMSM Drive," IEEE Transactions on Power Electronics, vol. 38, no. 9, pp. 11352-11367, Sept. 2023.
[37] Y. Zhang and J. Liu, "An improved Q-PLL to overcome the speed reversal problems in sensorless PMSM drive," in Proceedings of 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016, pp. 1884-1888.
[38] J. -H. Lee and S. -K. Sul, "Inverter Nonlinearity Compensation Through Deadtime Effect Estimation," IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10684-10694, Sept. 2021.
[39] Teledyne, "T3PS Series - Power Supplies". [Online]. [Available]:https://www.teledynelecroy.com/power-supplies/
[40] IDRC, "DSP-WR系列 - IDRC". [Online]. [Available]:https://www.idrc.com.tw/big5_ver/products/dspwr/dspwr-g3.htm
[41] YOKOGAWA, "Yokogawa Meters & Instruments Releases WT310 and WT330 Series Digital Power Meters". [Online]. [Available]:https://www.yokogawa.com/news/press-releases/2013/2013-01-09/
[42] Teledyne, "MDA 8000HD 電機馬達分析儀". [Online]. [Available]:https://zh-tw.teledynelecroy.com/oscilloscope/mda-8000hd-motor-drive-analyzers
校內:2027-08-21公開