| 研究生: |
黃裕翔 Huang, Yu-Hsiang |
|---|---|
| 論文名稱: |
適用於壓電共振系統之換流器設計及實現 Design and Implementation of Resonant Inverters for Piezoelectric Transducer Systems Applications |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 換流器 、零電壓切換 |
| 外文關鍵詞: | zero-voltage switching, inverter |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前超音波壓電共振之熱熔技術於工業上之應用已漸獲得重視,而開發壓電驅動更具有其實務應用參考價值,因此本文即設計換流器輸出高頻電壓,並藉由霍爾元件回授換流器電流,及經由回授電路判別後,利用場規劃邏輯閘晶片設計控制換流器之開關,以使換流器產生適當頻率之電壓,且經由適當頻率與電路設計之選擇,期使換流器開關於不同頻率下,皆可達到零電壓切換,俾以提升系統效能,降低開關溫度,並同時有效驅動壓電共振陶瓷產生機械振盪,以驅使系統穩定運作。本文同時推導換流器系統之輸出電壓與輸入電壓之關係,並經由模擬驗證本文所提之控制系統正確性,且實作雛型電路及紀錄實測波形,以佐證本文所提電路之可行性及實務採行之參考價值。
With an increased concern of ultrasonics piezoelectric transducer systems, the development of inverters to be suitable for such an industrial application system has gained a higher practical value nowadays. In this thesis, the resonant inverter circuit of high frequency that is controlled by field programmable gate array to drive ultrasonics piezoelectric systems has been completed with a high success. Meanwhile, the developed system owns the capability of zero-voltage switching(ZVS), hence exhibiting the merits of low power loss and temperature rise. To validate the effectiveness of the method, this thesis has investigated the voltage relationships between input and output as well as examined the corresponding waveforms. Test measurement help confirm the feasibility and practicality of the method for the application applied.
[1] C. H. Lin, Y. Lu, H. J. Chiu and C. L. Ou, “Eliminating the temperature effect of piezoelectric transformer in backlight electronic ballast by applying the digital phase-locked -loop technique,” IEEE Transactions on Industrial Electronics, April 2007, Vol. 54, No. 2 pp. 1024-1031.
[2] M. Jordan and J. A. O'Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” in Proc. IEEE APEC, Merrimack, NH, USA, 1993, pp. 424-431.
[3] W. Zheng and C. Zhao, “A wear evaluation of friction materials
used for rotary ultrasonic motors,” IEEE Ultrasonics Symposium, Nov.2008, Beijing, pp. 1838 -1841.
[4] K. Otokawa and T .Maeno, “Development of an arrayed-type multi -degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes,” IEEE on Ultrasonics Symposium, Yokohama, Japan, Aug. 2004, Vol 2, , pp. 1181-1184.
[5] H. W. Kim, S. Dong, P. Laoratanakul, K. Uchino and P. Park,
“Novel method for driving the ultrasonic motor, ” IEEE Transactions
on Ultrasonics, Oct. 2002, Vol. 49, No. 10 pp. 1356-1362.
[6] T .Senjyu, S. Yokada, H. Miyazato and K. Uezato, “Speed control of ultrasonic motors by adaptive control with a simplified mathematical model, ”IET Proceedings - Electric Power Applications, , May 1998 ,Vol 145, No. 3, pp. 180-184.
[7] M. I. Boulos, “Development of an ultrasonic motor as a fine-orienting stage, ” IEEE Transactions on Robotics and Automation, Dec. 1991,Vol. 19, No. 6, pp. 1078-1089.
[8] J. Tsujino, M. Hongoh and T. Ueoka, “Welding characteristics of 40 kHz ultrasonic plastic welding system using fundamental and higher resonance frequency vibrations, ”IEEE Ultrasonics Symposium, Yokohama, Japan, Oct. 2002, Vol 1, pp.699 – 702.
[9] K. Adachi, M. Saito, M. Ikeya and S. Mori, ”Development of torsional -vibration systems used for high frequency ultrasonic plastic welding,” IEEE Ultrasonics Symposium, Yonezawa, Japan, Nov. 1995, Vol. 2, pp. 1061-1064.
[10] J. Tsujino, Y. Ishii, T. Shiraki, T. Tamura and T. Ueoka,“ Welding
characteristics of 90 kHz two-vibration-system ultrasonic plastic welding equipment,” IEEE Ultrasonics Symposium, Yokohama, Japan, Nov. 1994, Vol. 3, pp. 1353-1358.
[11] J. Tsujino, T. Tamura, T. Uchida and T. Ueoka, “Improvement of welding characteristics of ultrasonic plastic welding using high and low frequency vibration systems of 90 kHz and 27 or 20 kHz,” IEEE Ultrasonics Symposium, Yokohama, Japan, Nov. 1996, Vol. 2, pp.1027-1032.
[12] J. Tsujino, M. Hongoh, M. Yoshikuni, H. Hashii and T. Ueoka, “Configuration of a 30-mm-diameter 94 kHz ultrasonic longitudinal vibration system for plastic welding, ” IEEE Ultrasonics Symposium Vol. 1, Oct. 2003 pp. 703 – 706.
[13] J. Tsujino, M. Hongoh, M. Yoshikuni, H. Miura and T. Ueoka, “Welding characteristics and temperature rises of various frequency ultrasonic plastic welding, ” IEEE Ultrasonics Symposium , Yokohama, Japan, Sept. 2005, Vol. 1, Sept. 2005, pp. 707 - 712.
[14] M. Hongoh, M. Yoshikuni, H. Miura, T. Ueoka and J. Tsujino, “Configuration of a 20-mm-diameter 150 kHz ultrasonic longitudinal vibration system for plastic welding,” IEEE Ultrasonics Symposium, Yokohama, Japan, Aug. 2004, Vol. 3, pp. 2326-2329.
[15] J. Tsujino, T. Uchida, Yamano, K. T. Iwamoto and T. Ueoka, “Ultrasonics plastic welding Using Two 27 complex vibration systems,” IEEE Ultrasonics Symposium, Aug. 2004, Oct. 1997,Vol. 1, pp. 855 - 860 .
[16] P. Curie and J. Curie, “Bull,” Soc.Min,de Framce, p90, 1880.
[17] W. G.. Hankel, “Abh.Sachs, ” p457, 1881.
[18] 吳朗,”電子陶瓷-壓電,”全新科技出版社,台北市,1994
[19] 高至鈞,汪建民 “壓電陶瓷縱談”,材料與社會第26期,pp.4-11,1989年2月
[20] M.E. Frerking ,Crystal Oscillator Design And Temperature compensation, Van Nostrand Reinhold Company,New York, 1987
[21] M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, August 1994, pp. 418-425.
[22] W. J. B. Heffernan, P. D. Evans, M. Thompson and P. Robert, “Three Phase Parallel Loaded Resonant Converter with Fixed Frequency Operation, ” 1991 Fourth International Conference on Power Electronics and Variable-Speed Drives, London, England, 17-19 July 1990, pp. 115 - 120.
[23] J. M. Alonso, C. Blanco, E. Lopes, A. J. Calleja and M. Rico, “Analysis, Design, and Optimization of the LCC Resonant Inverter as a High-Intensity Discharge Lamp Ballast,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, May 1998, pp. 573-585.
[24] Z. Chen, “Three Phase Parallel Loaded Resonant Converter with Fixed Frequency Operation, ” 1991 Fourth International Conference on Power Electronics and Variable-Speed Drives, London, England, July 1990, pp. 115 - 120.
[25] 梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公司,民國2001年。
[26] 江炫樟 編譯,電力電子學,全華科技圖書股份有限公司,民國2002年。
[27] H. Kifune, Y. Hatanaka and M. Nakaoka , “Quasi-Series-Resonant-Type Soft-Switching Phase Shift Modulated Inverter,” IET Proceedings – Electric Power Applications, November 2003,Vol. 150, No. 6, pp. 725-732.
[28] Elegant Power Application Research Center,電力電子學綜論,全華科技圖書股份有限公司,民國96年。
[29] A. Muthuramalingam, S. V. Vedula and P. A. Janakiraman, “Performance evaluation of an FPGA controlled soft switched inverter” IEEE Transactions on Power Electronics, July 2006, Vol. 21, No. 4 , pp. 923- 932
[30] S. Jung and S.S. Kim “Hardware Implementation of a Real-Time Neural Network Controller With a DSP and an FPGA for Nonlinear Systems,” IEEE Transactions on Industrial Electronics, Feb. 2007, Vol. 54, No. 1 pp. 265 - 271.
[31] DE2 Development and Education Board EP2C35F672C6 User Manual, ALTER, Corporation 2006.
[32] Low Power Quad Differential Comparators LM339 Data Sheet, STM icroelectronic Corporation, March 2003.
[33] Photo-Coupler TLP-250 Data Sheet, TOSHIBA Corporation, June 2004.
[34] Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60M303 Data Sheet, TOSHIBA Corporation, August 1997
[35] TC4013BP/TC4013BF/TC4013BFN Dual D-Type Flip-Flop Data Sheet, TOSHIBA Corporation, December 1997.
[36] JFET-Input Operational Amplifiers TL084 Data Sheet, Texas Instruments Inc., November 1992.
校內:2079-06-24公開