| 研究生: |
蔡詠安 Cai, Yong-An |
|---|---|
| 論文名稱: |
腦深部電刺激電極之定位輔助系統開發 Development of an Assistance Platform for Electrode Placement in the Deep Brain Stimulation System |
| 指導教授: |
梁勝富
Liang, Sheng-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 醫學資訊研究所 Institute of Medical Informatics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 深顱電刺激術 、癲癇控制 、腦部刺激 、電極埋置 、電刺激通道選擇 |
| 外文關鍵詞: | Epilepsy, seizure detection, electroencephalogram (EEG), brain stimulation, closed-loop, System-on-a-chip (SOC), wireless, response-induced features of drug delivery |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全世界約五千萬個癲癇病人中,仍有近三分之一的病人,在服用兩種以上抗癲癇藥物的情況下,仍無法達到有效控制發作,屬於難治型癲癇病患。目前對於難治型癲癇的治療,醫生會採取切除部分腦組織的方式來控制病情,但此一方式將對病人腦部造成永久性的傷害。若病灶位於語言、運動等重要功能區域,便無法以切除手術治療該病患之癲癇症。由於腦部切除手術將對腦部造成不可回復之傷害,在不切除腦部組織前提之下,如何控制難治型癲癇成為近年來重要的研究課題,深顱電刺激術(deep brain stimulation,DBS)即是深具潛力的治療方式(如圖1.1所示),並已被美國食品與藥品管理局(FDA)納入難治性癲癇的輔助治療手段。
近年來,許多團隊逐漸投入植入式電刺激器的開發,但將刺激電極植入正確腦區並確認電極運作正常,更是讓深顱電刺激發揮功能的重要關鍵。但對於開發電極手術植入所需的輔助系統,投入的研究相對稀少,即使有優良的顱內電刺激系統也未必能發揮正常功效。就我們過去長期的研究發現,對視丘下核(subthalamic nucleus, STN)下背側的zona incerta (ZI)區進行高頻率電刺激能有效中斷癲癇的發作[1],並開發一套閉迴路電刺激器來有效控制癲癇的病情[2][3][4]。但若手術中電極不安置在正確位置,或手術後選擇的刺激電極異常,則無法發揮功能。因此我們將開發一套深顱電刺激器植入手術中電極埋置輔助系統用以確保將電極放置於ZI位置,以及一套手術復原後電刺激通道選擇系統,確保刺激電極正常運作,發揮癲癇抑制功效。預期本系統將來可為DBS的臨床應用與動物實驗,帶來更多的成效與助益,推進相關技術的開發。
Epilepsy is one of the most common neurological disorders and a considerable portion of drug resisted epileptic patients cannot be well treated by available therapies nowadays. Deep brain stimulation (DBS) has been investigated for the treatment of epilepsy. Recently, an increase for the development of seizures has been reported in different animal models but the consequences of delivering stimulation to chronic epileptic animals remain unaddressed extensively.
In this study, we have successfully integrated a DBS system including: surgery, electrode implantation, stimulation parameters, EEG monitoring system and a portable stimulation channel switch allowed to manually select each pair of channels to find the best stimulation channel pair for future use. It has several aspects of advantages, which improves flexibility, mobility and easy-to-use of users. In the future, our system can also be extended for a variety of biomedical surgeries or experiments about deep brain stimulation. Currently, we had implemented this system on experiments including deep brain electrode implant in Zona Incerta on Long-Evans Rats, finding of best stimulation channel pair to inhibit Epilepsy on Chronic Epileptic Rats.
[1] Adeli, H., Ghosg-Dastidar, S., and Dadmehr, N., “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, 2007.
[2] Brudzynski, S.M., Cruickshank, J.W., and McLachlan, R.S., “Cholinergic mechanisms in generalized seizures: important of the zona incerta,” Can. J. Neurol. Sci., vol. 22, 116-120, 1995.
[3] Benazzouz, A., Tai, C.H., Meissner, W., Bioulac, B., Bezard, E., and Gross, C., “High-frequency stimulation of both zona incerta and subthalamic nucleus induces a similar normalization of basal ganglia metabolic activity in experimental parkinsonism,” FASEB J., vol. 18, 528-530 , 2004.
[4] Blumenfeld, H., “Consciousness and epilepsy: why are the patients with absence seizures absent?” Progress in brain research, vol.150, pp. 271-86, 2005.
[5] Bosnyakova, D., Gabova, A., Zharikova, A., Gnezditski, V., Kuznetsova, G., and van Luijtelaar, F., “Some peculiarities of time-frequency dynamics of spike-wave discharges in humans and rats,” Clinical Neurophysiology, vol. 118, pp. 1736-1743, 2007.
[6] Crunelli, V. and Leresche, N., “Childhood absence epilepsy: genes, channels, neurons and networks,” Nature Reviews Neuroscience, vol. 3, no.3, pp. 71-82, 2002.
[7] Coenen AML and van Luijtelaar ELJM, “Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats,” Behavior genetics, vol. 33, no. 6, pp. 35-53, 2003.
[8] Drinkenburg, W., van Luijtelaar, E., van Schaik, W. J. and Coenen, A., “Aberrant transients in the EEG of epileptic rats: a spectral analytical approach,” Physiology & behavior, vol. 54, no. 7, pp. 79–83, 1993.
[9] Deransart, C., Marescaux, C., and Depaulis, A., ”Involvement of nigra glutamatergic inputs in the control of seizures in a genetic model of absence epilepsy in the rat,” Neuroscience, vol. 71, 721-728, 1996.
[10] Depaulis, A. and van Luijtelaar, G., Genetic model of absence epilepsy in rat. In: Pitkanen, A., Schwartzkroin, P., Moshe, S., editors. Models of seizures and epilepsy. San Diego: Elsevier, vol.3, pp. 33–43, 2006
[11] Engel, J., Seizure and Epilepsy. Philadelphia, PA: Davis, 1989.
[12] Fanselow, E. E., Reid, A. P., and Nicolelis, M. A. L., “Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation,” Journal of Neuroscience, vol. 20, pp. 8160-8168, 2000.
[13] Feddersen, B., Vercueil, L., Noachtar, S., David, O., Depaulis, A., and Deransart, C., “Controlling seizures is not controlling epilepsy: A parametric study of deep brain stimulation for epilepsy,“ Neurobiology of Disease, vol. 27, pp. 292-300, 2007.
[14] Golub, G., “Numerical methods for solving linear least squares problems,” Numerische Mathematik, vol. 7, pp. 206-216, 1965.
[15] Gloor, P., Quesney, L.F. and Zumstein, H., “Pathophysiology of generalized penicillin epilepsy in the cats: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and subcortical structures,” Electroencephalography and clinical neurophysiology, vol.43, pp. 79-94, 1977.
[16] Gurbanova, A.A., Aker, R., Berkman, K., Onat, F.Y., van Rijn, C.M., and van Luijtelaar, G., "Effect of systemic and intracortical administration of phenytoin in two genetic models of absence epilepsy," Br. J. Pharmacol., vol. 148, 1076-1082, 2006.
[17] Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N., “Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection,” IEEE Transactions on Biomedical Engineering, vol. 54, pp. 1545-1551, 2007.
[18] Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N., “Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, 2008.
[19] Guehl, D., Vital, A., Cuny, E., Spampinato, U., Rougier, A., Bioulac, B., and Burbaud, “P. Postmortem proof of effectiveness of zona incerta stimulation in Parkinson disease,” Neurology, vol. 70, 1489-1490, 2008.
[20] Hamani, C., Sakabe, S., Bortolotto, Z.A., Cavalheiro, E.A., and Mello, L.E.A.M., "Inhibitory role of the zona incerta in the pilocarpine model of epilepsy," Epilepsy Res., vol. 49, 73-80, 2002.
[21] Hese, P. V., Martens, J. P., Boon, P., Dedeurwaerdere, S., Lemahie, I., and Van de Walle, R., “Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg,” Physics in Medicine and Biology, vol. 48, pp. 1685-1700, 2003.
[22] Hese, P. V., Martens, J. P., Waterschoot, L., Boon, P., Lemahieu, I., “Automatic detection of spike and wave discharges in the EEG of genetic absence epilepsy rats from Strasbourg,” IEEE Trans. on Biomedical Engineering, vol. 56, no. 3, pp. 706-717, 2009.
[23] Huang, W. C., Hu, S. H., Liu, K. H., Chen, S. Y.,Liu, D. M., “A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs,” J. Control. Release, 139(3):221-8, 2009.
[24] Iasemidis, L. D., “Epileptic seizure prediction and control,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 5, pp. 549-558, 2003.
[25] Kossoff, E. H., Ritzl, E. K., Politsky, J. M., Murro, A. M., Smith, J. R., Duckrow, R. B., Spencer, D. D., and Bergey, G. K., “Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring,” Epilepsia, vol. 45, pp. 1560-1567, 2004.
[26] Kannathal, N., Choo, M. L., Acharya, R. U., and Sadasivan, P. K., “Entropies for detection of epilepsy in EEG,” Computer Method and Programs in Biomedicine, vol. 80, pp. 187-194, 2005.
[27] Leppik, I.E., “Contemporary diagnosis and management of the patient with epilepsy,” Handbooks in health care, Newton, Pennsylvania, USA, fifth edition, 2000.
[28] Litt, B. and Echauz, J., “Prediction of epileptic seizures,” Lancet Neurology, vol. 1, no. 1, pp. 22–30, 2002.
[29] Litt, B., “Evaluating devices for treating epilepsy,” Epilepsia, vol. 44(Suppl. 7), pp. 30-37, 2003.
[30] Lehnertz, K., Mormann, F., Kreuz, T., Andrzejak, R. G., Rieke, C., David, P., and Elger, C. E., “ Seizure prediction by nonlinear EEG analysis,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 57-63, 2003.
[31] Liao, Y. F., “Role of zona incerta in absence seizure and facial tremor of the rat with spontaneous spike-wave discharge,” Tzu-Chi University, Graduate Institute of Medical Sciences, Master thesis, 2005.
[32] Liu, T. Y., Chen, S. Y., Lin, Y. L., and Liu, D. M., "Synthesis and Characterization of Amphiphatic Carboxymethyl-hexanoyl Chitosan Hydrogel: Water-Retention Ability and Drug Encapsulation," American Chemical Society, 22 (23), pp 9740–9745, 2006.
[33] Li, X., Ouyang, G., and Richards, D. A., “Predictability analysis of absence seizures with permutation entropy,” Epilepsy Research, vol. 77, pp. 70-74, 2007.
[34] Liang, S. F., Chang, W. L., Liao, Y. C., Chen, Y. J., Wang, H. C., Shaw, F. Z., “On-line real-time seizure detection in rats with spontaneous absence or pentylenetetrazol-induced epilepsy,” IEEE Transactions on Biomedical Engineering (2010) in revision.
[35] Marescaux, C., Vergnes, M. and Depaulis, A., “Genetic absence epilepsy in rats from Strasburg,” Journal of neural transmission, vol. 35, pp. 37-69, 1992.
[36] Meeren, H.K.M., Pijn, J.P.M., van Luijtelaar, E.L.J.M., Coenen, A.M.L., and Lopes da Silva, F.H.,"Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats," Journal of Neuroscience, vol. 22, 1480-1495, 2002.
[37] Meeren, H., van Luijtelaar, G., Lopes da Silva, F.,and Coenen, A., "Evolving concepts on the pathophysiology of absence seizures. The cortical focus theory," Arch. Neurol., vol. 62, 371-376, 2005.
[38] Mormann, F., Andrzejak, R. G., Elger, C. E. and Lenhnertz, K.,“Seizure prediction: the long and winding road,” Brain, vol. 130, no. 2, pp. 313–333, 2006.
[39] Niedermayer, E., “Primary (idiopathic) generalized epilepsy and underlying mechanisms,” Clinical EEG electroencephalography, vol.27, pp. 1-21, 1996.
[40] Niedermeyer, E., “Epileptic seizure disorders.” In: Electroencephalography. Basic principles, clinical applications, and related fields, edited by E. Niedermeyer and F. H. Lopes da Silva. Hong Kong: Williams & Wilkins, pp. 476-585, 1999.
[41] Nicolelis, M. A. L., “Actions from thoughts,” Nature, vol. 409, pp. 403-407, 2001.
[42] Osorio, I., Frei, M. G., Manly, B. F. J., Sunderam, S., Bhavaraju, N. C., and Wilkinson, S. B., “An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy,” J. Clin. Neurophysiology, vol. 18, pp. 533–44, 2001.
[43] Osorio, I., Frei, M. G., Giftakis, J., Peters, T., Ingram, J., Turnbull, M., Herzog, M., Rise, M. T., Schaffner, S., Wennberg, R. A., Walczak, T. S., Risinger, M.W. and Ajmone-Marsan, C., “Performance reassessment of a real-time seizure-detection algorithm on long ECoG series,” Epilepsia, vol. 43, no. 12, pp. 1522-1535, 2002.
[44] Osorio, I., Frei, M. G., Sunderam, S., Giftakis, J., Bhavaraju, N. C., Schaffner, S. F., and Wilkinson S. B., “Automated seizure abatement in humans using electrical stimulation,” Annals of Neurology, vol. 57, pp. 258-268, 2005.
[45] Ocak, H., “Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy,” Expert System with Applications, vol. 36, pp. 2027-2096, 2009.
[46] Pincus, S. M., “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Science of the United State of America, vol. 88, pp. 2297-2301, 1991.
[47] Paul, J. S., Patel, C. B., Al-Nashash, H., Zhang, N., Ziai, W. C., Mirski, M. A., Sherman, D. L., “Prediction of PTZ-induced seizures using wavelet-based residual entropy of cortical and subcortical field potentials,” IEEE Trans. on Biomedical Engineering, vol. 50, no. 5, pp. 640-648, 2003.
[48] Politsky, J. M., Estellar, R., Murro, A. M., Smith, J. R., Ray, P., Park, Y. D., and Morrell, M. J., “Effects of electrical stimulation paradigm on seizure frequency in medically intractable partial seizure patients with a cranially implanted responsive cortical neurostimulator,” Proc. Annual Meeting of American Epilepsy Society (AES) (2005), 2005.
[49] Plaha, P., Ben-Shlomo, Y., Patel, N.K., and Gill, S.S., “Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism,” Brain 129, 1732-1747, 2006.
[50] Racin, R. J., “Modification of seizure activity by electrical stimulation, II: motor seizure,” Electroencephalography and Clinical Neurophysiology, vol. 32, pp. 281-294, 1972.
[51] Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., and Basar, E., “Wavelet entropy: a new tool for analysis of short duration brain electrical signals,” Journal of Neuroscience Methods, vol. 105, pp. 65-75, 2001.
[52] Rosso, O. A., “Entropy changes in brain function,” International Journal of Psychophysiology, vol. 64, pp. 75-80, 2007.
[53] Raghunathan, S., Gupta, S. K., Ward, M. P., Worth, R. M., Roy, K., Irazoqui, P. P., “The design and hardware implementation of a low-power real-time seizure detection algorithm,” Journal of Neural Engineering, vol. 6, no. 5, article number 056005, 2009.
[54] Snead III, O. C., Depaulis, A., Vergnes, M., Marescaux, C., “Absence epilepsy: advances in experimental animal models,” Advances in Neurology, vol. 79, pp. 253-278, 1999.
[55] Shaw, F. Z., “Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity?” Journal of Neurophysiology, vol. 91, pp. 63-77, 2004.
[56] Shaw, F. Z., Liao, Y. F., “Relation between activities of the cortex and vibrissae muscle during high-voltage rhythmic spike discharges in rats,” J Neurophysiol 93: 2435-2448, 2005.
[57] Srinivasan, V., Eswaran, C., and Sriraam, N., “Artificial neural network based epileptic detection using time-domain and frequency-domain features,” Journal of Medical Systems, vol. 29, no. 6, pp. 647-660, December, 2005.
[58] Shaw, F. Z., Lee, S. Y., and Chiu, T. H., “Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat,” Sleep, vol, 29, pp. 285-293, 2006.
[59] Shaw, F. Z., “7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation,” Journal of Neurophysiology, vol. 97, 238-247, 2007.
[60] Schuyler, R., White, A., Staley, K., and Cios, K. J., “Epileptic seizure detection,” IEEE Engineering in Medicine and Biology Magazine, vol. 26, pp. 74-81, 2007.
[61] Srinivasan, V., Eswaran, C., and Sriraam, N., “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, pp. 288-295, 2007.
[62] Shaw, F. Z. and Liao, Y. F., “Incertal control of high-voltage cortical oscillation and whisker tremor in rats with spontaneous absence epileptic discharges,” Forum of European Neuroscience Society, Geneva, Switzerland, 2008.
[63] Stacey, W. C. and Litt, B., “Technology insight: neuroengineering and epilepsy – designing devices for seizure control,” Nature Clinical Practice Neurology, vol. 4, pp. 190-201, 2008.
[64] Sun, F. T., Morell, M. J. and Wharen, R. E., “Responsive cortical stimulation for the treatment of epilepsy,” Neurotherapeutics, vol. 5, pp. 68-74, 2008.
[65] Theodore, W. H. and Fisher, R. S., “Brain stimulation for epilepsy,” The Lancet Neurology, vol. 3, pp. 111-118, 2004.
[66] Talathi, S. S., Hwang, D. U., Spano, M. L., Simonotto, J., Furman, M. D., Myers, S. M., Winters, J. T., Ditto, W. L., and Carney, P. R., “Non-parametric early seizure detection in an animal model of temporal lobe epilepsy,” Journal of Neural Engineering, vol. 5, no. 1, pp. 85-98, 2008.
[67] Vergnes, M., Marescaux, C., Micheletti, G., Reis, J., Depaulis, A. and Rumbach, L., “Spontaneous paroxysmal electroclinical pattern in rat: a model of generalized non-convulsive epilepsy,” Neuroscience, vol. 33, pp. 97-101, 1982.
[68] Van Luijtelaar ELJM, and Coenen AML. “Two types of electrocortical paroxysms in an inbred strain of rats,” Neuroscience letters, vol. 70, no. 39 pp. 3-7, 1986.
[69] Voges, J., Volkmann, J., Allert, N., Lehrke, R., Koulousakis, A., Freund, H. J., and Sturm, V., “Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anaton mical electrode position,” J. Neurosurg. 96, 269-279 ,2002.
[70] Whitchurch, A. K., Ashok, B. H., Kumaar, R. V., Saurkesi, K., and Varadan, V. K., “Wireless system for long-term EEG monitoring of absence epilepsy,” Proceeding of SPIE, vol. 4937, pp. 343-349, 2002.
[71] White, A. M., Williams, P. A., Ferraro, D. J., Clark, S., Kadam, S. D., Dudek, F. E. and Staley, K. J., “Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury,” Journal of Neuroscience Methods, vol. 152, pp. 255-266, 2006.
[72] Wilson, S. B., “Algorithm architectures for patient dependent seizure detection,” Clinical Neurophysiology, vol. 117, pp. 1204-1215, 2006.
[73] Young, C. P., Liang, S. F., Chang, D. W., Liao, Y. C., Shaw, F. Z., and Hsieh, C. H., “A portable wireless online closed-loop seizure controller in freely moving rats,” IEEE Trans. on Instrumentation & Measurement, in press.
校內:立即公開