| 研究生: |
高敏峯 Kao, Min-feng |
|---|---|
| 論文名稱: |
單一細胞阻抗平台之研發 The study of impedance spectroscopy for single cell analysis |
| 指導教授: |
張凌昇
Jang, Ling-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 生醫檢測 、微機電 、細胞阻抗 |
| 外文關鍵詞: | MEMS, single cell analysis, cell impedance, bio-detection |
| 相關次數: | 點閱:126 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在最近三四年,由於人類基因解碼工作的完成,使生物晶片的研究開始受到重視。活體細胞晶片可以在細胞階層量測到多重細胞功能的參數,例如:細胞阻抗、O2、CO2、NO、葡萄糖濃度、pH值及基因表現數等,藉由這些參數可以有機會對細胞內複雜的反應過程進行更一步的了解。為因應此項研究的需求,本計畫進行細胞電阻抗的分析。現今的生物技術發展迅速,藉由醫學理論和工程的技術結合所開發的高靈敏度、高效率且即時和微量的生醫感應檢測裝置,已經有幾十年的研究歷史,其中細胞電阻抗分析(Cell electrical impedance analysis)的技術發展快速,成為現今的生醫檢測的有效方法之一。
本論文建立細胞阻抗分析平台,其中包含前端的細胞捕獲裝置以及AD5934開發板阻抗分析量測系統。細胞捕獲裝置目的在於利用MEMS之技術捕獲單一HeLa細胞,並且沒有其他電場或磁場等外力介入,可簡化量測分析。阻抗分析量測系統與PC整合可藉由資料擷取來建立細胞之等效電路模型。此不僅可應用於醫學檢測之快速分析應用於臨床試驗或是疾病檢測,還可省去大型機台的負荷和耗時。將來此平台亦可藉由與微型幫浦整合之方式成為Lab-on-a-chip支元件。
Since the completion of the sequencing of human genome will open up many new areas of study, scientists need to develop new research tools, approaches and capabilities in order to make this vast array of biological information to be useful. The growing availability of the genome sequence data is creating the possibility for developing a comprehensive understanding of complex cellular processes. In order to achieve this goal, it will be necessary to measure multiple parameters on chip in single living cells in real time, for instance, cell impedance, O2, CO2, NO, glucose, pH, and so on. The cell impedance changes when the ion concentration and potential of the cells are different. The impedance for single living cells can be used for fast disease diagnosis.
This work developed spectroscopy for the single cell impedance measurement. The spectroscopy contains a microfluidic device and an AD5934 Evaluation Board. The microfluidic device captures single cell capture physically by microstructures in the microchannel. The AD5934 Evaluation Board and GUI (Graphic user interface) software could measure the impedance of a single HeLa cell (Human cervical epithelioid carcinoma). The device includes a glass substrate with electrodes and a PDMS channel with micro pillars. The commercial software CFD-ACE+ was used to verify the flow of the microstructures in the channel. Additionally, an equivalent circuit model of the device was established and fitted well to the experimental results in this study.
[1] I. H. G. S. Consortium, “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860-921, 2001.
[2] J. C. e. a. Venter, “The sequence of the human genome,” Science, vol. 291, pp. 1304-51, 2001.
[3] K. H. Gilchrist, L. Giovangrandi, and G. T.A. Kovacs, “Analysis of Microelectrode-Recorded Signals from a Cardiac Cell Line as a Tool for Pharmaceutical Screening”, The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, pp. 10-14, Jun, 2001.
[4] R. Schmukler, G. Johnson, J. Z. Bao, and C.C. Davis, “Electrical Impedance Of Living Cells : A Modified Four Electrode Approach”, IEEE Engineering in Medicine & Biology Society 10th Annual International Conference. vol. 10, pp. 899-901, Nov, 1988.
[5] Daniel D. Chiras(2002). Human Biology, Fifth Edition: Jones and Bartlett.
[6] L. Ye, T.A. Martin, C. Parr, G.M. Harrison, R.E. Mansel, W.G. Jiang, “Biphasic effects of 17-β-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells”, J. Cell. Physiol. 196 (2), pp. 362–369, 2003.
[7] M. Niikura, A. Maeda, T. Ikegami, M. Saijo, I. Kurane, S. Morikawa, “Modification of endothelial cell functions by Hantaan virus infection: prolonged hyper-permeability induced by TNF-alpha of hantaan virusinfected endothelial cell monolayers”, Arch. Virol. 149 (July (7)), pp. 1279–1292, 2004.
[8] L. Yang, C. Ruan, Y. Li, “Detection of viable salmonella Typhirium by Impedance measurement of electrode capacitance and medium resistance”, Biosens. Bioelectron. vol. 19, pp. 495–502, 2003.
[9] N. Verma, M. Singh, “A disposable microbial based biosensor for quality control in milk”, Biosens. Bioelectron. vol. 18, pp. 1219–1224, 2003.
[10] J.J. Gau, E.H. Lan, B. Dunn, C.M. Ho, J.C.S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self assembled monolayers”, Biosens. Bioelectron. vol. 16, pp. 745–755, 2001.
[11] K.H. Gilchrist, L. Giovangrandi, R.H. Whittington, G.T.A. Kovacs, “Sensitivity of cell based biosensors for environmental variables”, Biosens. Bioelectron. vol. 20, pp. 1397–1406, 2005.
[12] I. Giaever, C.R. Keese, “Toxic Cells can tell”, Chemtech, pp. 116–125, 1992.
[13] R. Gomez, R. Bashir, A. Sarikaya, M. R. Ladisch, J. Sturgis, J. P. Robinson, T. Geng, A. K. Bhunia, H. L. Apple and S. Wereley, “Microfluidic bioship for impedance spectroscopy of biological species.”, Biomed. Microdev., 2001, 3, 201–209.
[14] S. Gawad, K. Cheung, U. Seger, A. Bertsch and P. Renaud, “Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations”, Lab Chip, vol. 4, pp. 241–251, 2004.
[15] H. E. Ayliffe, A. B. Frazier and R. D. Rabbitt, “Electric impedance spectroscopy using microchannels with integratedmetal electrodes”, IEEE J. Microelectromech. Syst., vol. 8, pp. 50–57, 1999.
[16] The 16th Annual International Conference on Microelectromechanical Systems (MEMS 2003), Kyoto, Japan, 2003.
[17] C. Liao, G. Lee, H. Liu, T. Hsieh, and C. Luo, ”Micro Reverse-Transcription Polymerase Chain Reaction System For Clinical Diagnosis of RNA-based Viruses”, Nucleic Acids Research, Vol. 33, No.18, pp. 156-162, 2005.
[18] M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo and L. P. Lee, “A single cell electroporation chip”, Lab Chip, vol. 5, pp. 38-43, 2005.
[19] Y. Yang, J. Wang, G. Yu, F. Niu and P. He, ” Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy”, Physiol. Meas. vol. 27, pp. 1293–1310, 2006.
[20] S. Zlochiver, M. Arad, M. Radai, D. Barak-Shinar, H. Krief, T. Engelman, R. Ben-Yehuda, A. Adunsky, S. Abboud, “A portable bio-impedance system for monitoring lung resistivity”, Medical Engineering & Physics, vol. 29, Issue 1, pp. 93-100, 2006.
[21] V. Giurgiutiu and B. Xu, “Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique”, Proceedings of the SPIE, vol. 5391, pp. 774-785, 2004.
[22] Robert M. Johan, “Cell trapping in microfluidic chips”, Analytical and Bioanalytical Chemistry, vol. 385, 3, pp. 408-412, 2006.
[23] R. Carlson, C. Gabel, S. Chan, R. Austin, “Self-sorting of white blood cells in a lattice”, Phys. Rev. Lett. 79, pp. 2149–2152, 2006.
[24] O. Bakajin, R. Carlons, C. Chou, S. Chan, C. Gabel, J. Knight, T. Cox, R. Austin, “Sizing, Fractionation and Mixing of Biological Objects via Microfabricated Devices”, MicroTAS, pp. 193–198, 1998.
[25] H. Andersson, W. van der Wijngaart, P. Enoksson, G. Stemme, “Micromachined flow-through filter-chamber for chemical reactions on beads”, Sensors and Actuators 67, pp. 203–208, 2000.
[26] B. W. Chang, “Development of Bio-Sensing Technology Based on Electrical Impedance Analysis”, Dissertation for Doctor of Philosophy, Institute of Biomedical Engineering, National Cheng Kung University, R.O.C, 2004.
[27] Gedees LA, Baker LE. Principles of applied biomedical instrumentation. Third Edition, New York, A Wiley-Inter-science Publication, 1989, 537-576.
[28] K. H, S. K, H. M., “Electrical measurement of fluid distribution in human legs: estimation of extra-and intra-cellular fluid volume.”, J Microw Power., 18(3), pp. 233-43, 1983.
[29] L. Jang, M. Wang, “Microfluidic device for cell capture and impedance measurement”, Biomedical Microdevices. 2007.
[30] AD5934, 250kSPS, 12-Bit Impedance Converter Network Analyzer Datasheet, Analog Devices, Inc., 2005.
[31] Goldberg, Bar-Giora, Digital Techniques in Frequency Synthesis, New York: McGraw-Hill, 1996.
[32] J. R. Masters, “HeLa cells 50 years on: the good, the bad and the ugly”, Nature Reviews Cancer, 2, pp. 315-319, 2002.
[33] W. Mitch, A. Goldberg, “Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway”, NEJM, 335, pp. 1897-1905, 1996.
[34] K. GJ, “Human genetic diseases of proteolysis“, Human Mutation, 13, pp. 87-98, 1999.
[35] A. Weissman, “Regulating protein degradation by ubiquitination”, Immunol Today, 18, pp. 189-198, 1997.
[36] M. Pagano, “Cell cycle regulation by the ubiquitin pathway”, FASEB J, 11, pp. 1067-1075, 1997.
[37] W. Gerards, W. de Jong, W. Boelens, H. Bloemendal, “Structure and assembly of the 20S proteasome”, Cell Mol Life Sci, 54, pp. 253-262, 1998.
[38] M. Cuzner, G. Opdenakker, “Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system”, J Neuroimmunol, 94, pp. 1-14, 1999.
[39] K. Rock, A. Goldberg, “Degradation of cell proteins and the generation of MHC class I-presented peptides”, Annu. Rev. Immunol., 17, pp. 739-779, 1999.
[40] S. Mole, H. Mitchison, P. Munroe, “Molecular basis of the neuronal ceroid lipofuscinoses: mutations in CLN1, CLN2, CLN3, and CLN5”, Human Mutation, 14, pp. 199-215, 1999.