| 研究生: |
施仲隆 Shih, Chung-Lung |
|---|---|
| 論文名稱: |
Co(Nb1–xTax)2O6陶瓷在微波頻段之研究與應用 Study and Applications of Co(Nb1–xTax)2O6 Ceramics at Microwave Frequency |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 陶瓷 、微波 、濾波器 |
| 外文關鍵詞: | ceramics, microwave, filter |
| 相關次數: | 點閱:56 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,並嘗試著調整共振頻率溫度飄移係數使其為零;第二部份將介紹其在被動元件之應用,並實作於不同基板上探討元件尺寸的改善。
第一部份首先要介紹CoNb2O6陶瓷系統之微波介電特性。並使用與Nb5+相同離子半徑的Ta5+來微量取代Nb5+位置,形成Co(Nb1-xTax)2O6(x=0.02-0.1)固溶體,研究其材料特性及微波介電性質。由實驗中可得知Co(Nb0.95Ta0.05)2O6在1210°C燒結4小時可得到最佳之介電特性εr ~ 22.6,Q׃~ 132,100 GHz(at 9.245 GHz),τf ~ –62 ppm/°C。由於此系統之τf為負值,我們添加具正值共振頻率溫度飄移係數的TiO2(τf ~ +420 ppm/°C),探討共振頻率溫度飄移係數趨近零之最佳比例。
第二部份我們設計及實作一操作在2.4 GHz的微帶線帶通濾波器,濾波器主要採用一反對稱饋入磁場耦合濾波器為主體,並在共振器內加入一開路殘段(open-stub),藉此使得頻寬變窄。在饋入端上也加上一開路殘段來抑制倍頻寄生響應。最後,我們將此電路實作在FR4、氧化鋁和0.84Co(Nb0.95Ta0.05)2O6–0.16TiO2基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。
There are two main subjects in this thesis. The first one discussed was the low loss dielectric material, and to adjusted temperature coefficient of resonant frequency to closed zero. Second, passive components and improvement of circuit size in different substrates will be discussed.
First, used Ta5+ ions to substituted Nb5+ ions for the the same ionic radius and form the Co(Nb1-xTax)2O6 (x=0.02-0.1)solid solutions. According to the experiment results of microwave dielectric properties showed that Co(Nb0.95Ta0.05)2O6 ceramics has the superior properties at sintering temperature 1210°C for 4 hours, and the dielectric properties are εr~ 22.6, Q×f ~ 132,100(at 9.245 GHz)and τf ~ –62 ppm/°C. Concerning about the negative value of τf, choosed the TiO2(τf ~ +420 ppm/°C)to adjust the value, then made an the temperature coefficient of resonant frequency to closed zero.
Second, designed and fabricated a microstrip band-pass filter which resonator at 2.4 GHz. The filter was a magnetic coupling filter using skew-symmetric feed structure, and tapped open stub in this design to obtained a narrow bandwidth. Finally, an open-stub was added to suppress the spurious response. The pattern was printed on FR4, Al2O3 and 0.84Co(Nb0.95Ta0.05)2O6–0.16TiO2 substrates. By measured their frequency responses, the substrate with high dielectric constant and low loss, can improve the performance and reduce the size of filter.
[1] 邱碧秀, 電子陶瓷材料, 徐氏基金會出版, (1997).
[2] H. M. O’bryan, J. Thomson, and J. K. Plourde, “A New BaO–TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[3] Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment,” Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
[4] C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[5] A. Belous, O. Ovchar, B. Jancar, J. Bezjak, “The Effect of Non-Stoichiometry on the Microstructure and Microwave Dielectric Properties of the Columbites A2+Nb2O6,” J. Eur. Ceram. Soc., 27 [8] 2933–2936 (2007).
[6] A. Templeton, X. Wang, S. J. Penn, S. J. Webb, L. F. Coben and N. McN. Alford, “Microwave Dielectric Loss of Titanium Dioxide,” J. Am. Ceram. Soc., 83 [1] 95–100 (2000).
[7] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
[8] D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
[9] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
[10] D. Kajfez and P. Guillon, Dielectric Resonators, Artech House (1989).
[11] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), 陶瓷材料概論, 曉園出版社, (1988).
[12] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
[13] M. Maeda, T. Yamamura, and T. Ikeda, “Dielectric Characteristics of Several Complex Oxide Ceramics at Microwave Frequencies,” J. Appl. Phys., 26 [26] 76-79 (1987).
[14] G. R. Lumpkin, K. L. Smith, and M. G. Blackford, “Heavy Ion Irradiation Studies of Columbite,Brannerite,and Pyrochlore Structure Types,” J. Nucl. Mater.,289 [1] 177-187 (2001).
[15] R. C. Pullar, J. D. Breeze, and N. McN. Alford, “ Microwave Dielectric Properties of Columbite-Structure Niobate Ceramics M2+Nb2O6,” Key Eng. Mater, 224 1–4 ( 2002).
[16] S. Butee, A. Kulkarni, O. Prakash, R. P.R.C. Aiyar, S. George, and M. Sebastian, “High Q Microwave Dielectric Ceramics in (Ni1-xZnx)Nb2O6 System” J. Am. Ceram. Soc., 92 [5]1047-1053 (2009).
[17] 余樹楨, 晶體之結構與性質, 渤海堂文化公司, (2007).
[18] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
[19] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
[20] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
[21] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[22] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Second Edition, Artech House, (1996).
[23] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
[24] R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
[25] G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
[26] E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[27] S. H. Cha: IEEE. Trans. MTT, vol.MTT-33, 519 (1985).
[28] Y. Z. Zhu, and Y. J. Xie, “New λ/2 Microstrip Bandpass Filters Using Skew-Symmetric Feed Structure,” Microw Optical Tech Lett., 50 [2] 440-442 (2008).
[29] M. Matsuo, H. Yabuki and M. Makimoto, “The Design of a Half-Wave Legth Resonator BPF With Attenuation Poles at Desired Frequencies,” IEEE MIT-S Digest 1181-1184 (2000).
[30] J. R. Lee, J. H. Cho, and S. W. Yun, “New Compact Bandpass Filter Using Microstrip λ/4 Resonators with Open Stub Inverter,” IEEE Microwave and Guided Wave Lett, 10 [12] (2000).
[31] C. L. Huang, J. J. Wang, and Y. P. Chang, “Using High Permittivity Ceramic Substrates to Design a Bandpass Filter Wirh Open Stub,” IEEE Microwave and Guided Wave Lett, 49 [4] (2007).
[32] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[33] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[34] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[35] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[36] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a Planar Filter Using a Feed Structure,” IEEE Trans. Microwave Theory Tech., 50 [10] 2362–2367 (2002).
[37] C. L. Huang, and J. Y. Chen, “Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1-xCox)Ta2O6 Solid Solutions,” J. Am. Ceram. Soc., 93 [2] 470–473 (2010).